Cargando…
PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
BACKGROUND: Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and h...
Autores principales: | Lemsara, Amina, Ouadfel, Salima, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161108/ https://www.ncbi.nlm.nih.gov/pubmed/32299344 http://dx.doi.org/10.1186/s12859-020-3465-2 |
Ejemplares similares
-
PathMe: merging and exploring mechanistic pathway knowledge
por: Domingo-Fernández, Daniel, et al.
Publicado: (2019) -
Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis
por: Alessandri, Luca, et al.
Publicado: (2021) -
Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data
por: Min, Eun Jeong, et al.
Publicado: (2020) -
Multiset sparse partial least squares path modeling for high dimensional omics data analysis
por: Csala, Attila, et al.
Publicado: (2020) -
Consensus clustering applied to multi-omics disease subtyping
por: Brière, Galadriel, et al.
Publicado: (2021)