Cargando…
Deep Reinforcement Learning for Data Association in Cell Tracking
Accurate target detection and association are vital for the development of reliable target tracking, especially for cell tracking based on microscopy images due to the similarity of cells. We propose a deep reinforcement learning method to associate the detected targets between frames. According to...
Autores principales: | Wang, Junjie, Su, Xiaohong, Zhao, Lingling, Zhang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161216/ https://www.ncbi.nlm.nih.gov/pubmed/32328484 http://dx.doi.org/10.3389/fbioe.2020.00298 |
Ejemplares similares
-
Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning
por: Xu, Can, et al.
Publicado: (2022) -
Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
por: Xu, Jianqiao, et al.
Publicado: (2022) -
A deep learning mixed-data type approach for the classification of FHR signals
por: Spairani, Edoardo, et al.
Publicado: (2022) -
Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative
por: Yeoh, Pauline Shan Qing, et al.
Publicado: (2023) -
Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches
por: Liu, Xiao-Ying, et al.
Publicado: (2023)