Cargando…
Combined freezing-thawing pretreatment and microbial electrolysis cell for enhancement of highly concentrated organics degradation from dewatered sludge
The influence of freezing-thawing (F/T) pretreatment on the degradation of highly concentrated organic matters from dewatered sludge (DS) in microbial electrolysis cell (MEC) was investigated in this study. Extended freezing disintegrated the DS matrix and resulted in accelerated hydrolysis rate. Th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161561/ https://www.ncbi.nlm.nih.gov/pubmed/32129699 http://dx.doi.org/10.1080/21655979.2020.1736735 |
Sumario: | The influence of freezing-thawing (F/T) pretreatment on the degradation of highly concentrated organic matters from dewatered sludge (DS) in microbial electrolysis cell (MEC) was investigated in this study. Extended freezing disintegrated the DS matrix and resulted in accelerated hydrolysis rate. The biogas production and stabilization were increased due to the pretreatment by 25–70% of H(2) production rate and 17.8–33.8% of COD reduction rate, respectively. Fourier transform infrared spectroscopy analysis indicated that the pretreatment was unable to alter the bioelectrochemical reactions except for accelerating degradation rate. Excitation and emission matrix (EEM) spectra showed that aromatic protein and soluble microbial products (SMPs)-like materials in DS were increasingly solubilized by the pretreatment and significantly removed during electrogenesis. The F/T-pretreated DS favored the enrichment of exoelectrogens in MEC. |
---|