Cargando…

Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model

We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty of the MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs to the simulation outputs for the cassava development, growth, and yield in cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Cadena, Leidy Patricia, Hoogenboom, Gerrit, Fisher, Myles James, Ramirez-Villegas, Julian, Prager, Steven Dean, Becerra Lopez-Lavalle, Luis Augusto, Pypers, Pieter, Mejia de Tafur, Maria Sara, Wallach, Daniel, Muñoz-Carpena, Rafael, Asseng, Senthold
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161911/
https://www.ncbi.nlm.nih.gov/pubmed/32336915
http://dx.doi.org/10.1016/j.eja.2020.126031
_version_ 1783523000884133888
author Moreno-Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, Myles James
Ramirez-Villegas, Julian
Prager, Steven Dean
Becerra Lopez-Lavalle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz-Carpena, Rafael
Asseng, Senthold
author_facet Moreno-Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, Myles James
Ramirez-Villegas, Julian
Prager, Steven Dean
Becerra Lopez-Lavalle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz-Carpena, Rafael
Asseng, Senthold
author_sort Moreno-Cadena, Leidy Patricia
collection PubMed
description We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty of the MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs to the simulation outputs for the cassava development, growth, and yield in contrasting environments. We compared enhanced Sampling for Uniformity, a qualitative screening method new to crop simulation modeling, and Sobol, a quantitative, variance-based method. About 80% of the GSPs contributed to most of the variation in maximum leaf area index (LAI), yield, and aboveground biomass at harvest. Relative importance of the GSPs varied between warm and cool temperatures but did not differ between rainfed and no water limitation conditions. Interactions between GSPs explained 20% of the variance in simulated outputs. Overall, the most important GSPs were individual node weight, radiation use efficiency, and maximum individual leaf area. Base temperature for leaf development was more important for cool compared to warm temperatures. Parameter uncertainty had a substantial impact on model predictions in MANIHOT simulations, with the uncertainty 2–5 times larger for warm compared to cool temperatures. Identification of important GSPs provides an objective way to determine the processes of a simulation model that are critical versus those that have little relevance.
format Online
Article
Text
id pubmed-7161911
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-71619112020-04-22 Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model Moreno-Cadena, Leidy Patricia Hoogenboom, Gerrit Fisher, Myles James Ramirez-Villegas, Julian Prager, Steven Dean Becerra Lopez-Lavalle, Luis Augusto Pypers, Pieter Mejia de Tafur, Maria Sara Wallach, Daniel Muñoz-Carpena, Rafael Asseng, Senthold Eur J Agron Article We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty of the MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs to the simulation outputs for the cassava development, growth, and yield in contrasting environments. We compared enhanced Sampling for Uniformity, a qualitative screening method new to crop simulation modeling, and Sobol, a quantitative, variance-based method. About 80% of the GSPs contributed to most of the variation in maximum leaf area index (LAI), yield, and aboveground biomass at harvest. Relative importance of the GSPs varied between warm and cool temperatures but did not differ between rainfed and no water limitation conditions. Interactions between GSPs explained 20% of the variance in simulated outputs. Overall, the most important GSPs were individual node weight, radiation use efficiency, and maximum individual leaf area. Base temperature for leaf development was more important for cool compared to warm temperatures. Parameter uncertainty had a substantial impact on model predictions in MANIHOT simulations, with the uncertainty 2–5 times larger for warm compared to cool temperatures. Identification of important GSPs provides an objective way to determine the processes of a simulation model that are critical versus those that have little relevance. Elsevier 2020-04 /pmc/articles/PMC7161911/ /pubmed/32336915 http://dx.doi.org/10.1016/j.eja.2020.126031 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Moreno-Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, Myles James
Ramirez-Villegas, Julian
Prager, Steven Dean
Becerra Lopez-Lavalle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz-Carpena, Rafael
Asseng, Senthold
Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_full Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_fullStr Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_full_unstemmed Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_short Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_sort importance of genetic parameters and uncertainty of manihot, a new mechanistic cassava simulation model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161911/
https://www.ncbi.nlm.nih.gov/pubmed/32336915
http://dx.doi.org/10.1016/j.eja.2020.126031
work_keys_str_mv AT morenocadenaleidypatricia importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT hoogenboomgerrit importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT fishermylesjames importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT ramirezvillegasjulian importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT pragerstevendean importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT becerralopezlavalleluisaugusto importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT pyperspieter importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT mejiadetafurmariasara importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT wallachdaniel importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT munozcarpenarafael importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT assengsenthold importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel