Cargando…
ChemOS: An orchestration software to democratize autonomous discovery
The current Edisonian approach to discovery requires up to two decades of fundamental and applied research for materials technologies to reach the market. Such a slow and capital-intensive turnaround calls for disruptive strategies to expedite innovation. Self-driving laboratories have the potential...
Autores principales: | Roch, Loïc M., Häse, Florian, Kreisbeck, Christoph, Tamayo-Mendoza, Teresa, Yunker, Lars P. E., Hein, Jason E., Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161969/ https://www.ncbi.nlm.nih.gov/pubmed/32298284 http://dx.doi.org/10.1371/journal.pone.0229862 |
Ejemplares similares
-
Phoenics: A Bayesian Optimizer for Chemistry
por: Häse, Florian, et al.
Publicado: (2018) -
Data-science driven autonomous process optimization
por: Christensen, Melodie, et al.
Publicado: (2021) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Automatic Differentiation in Quantum Chemistry with
Applications to Fully Variational Hartree–Fock
por: Tamayo-Mendoza, Teresa, et al.
Publicado: (2018) -
Efficiency of energy funneling in the photosystem II supercomplex of higher plants
por: Kreisbeck, Christoph, et al.
Publicado: (2016)