Cargando…
NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?
Hypercholesterolaemia is considered an important cause of atherosclerotic cardiovascular disease. In a previous investigation, we demonstrated that cultured hepatoma cells treated with hypercholesterolaemic sera compared with cells treated with normocholesterolaemic sera show overexpression of mRNAs...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162471/ https://www.ncbi.nlm.nih.gov/pubmed/32298312 http://dx.doi.org/10.1371/journal.pone.0231506 |
Sumario: | Hypercholesterolaemia is considered an important cause of atherosclerotic cardiovascular disease. In a previous investigation, we demonstrated that cultured hepatoma cells treated with hypercholesterolaemic sera compared with cells treated with normocholesterolaemic sera show overexpression of mRNAs related to mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS2). In the present work, using an NMR metabolomic analysis, we demonstrate that the hypercholesterolaemic blood sera previously used to treat cultured hepatoma cells are characterized by a metabolomic profile that is significantly different from the normocholesterolaemic sera. Acetate, acetone, 2-hydroxybutyrate, cysteine, valine, and glutamine are the metabolites distinguishing the two groups. Abnormalities in the concentrations of these metabolites reflect alterations in energy-related pathways, such as pantothenate and CoA biosynthesis, pyruvate, glycolysis/gluconeogenesis, the citrate cycle, and ketone bodies. Regarding ketone bodies, the pathway is regulated by HMGCS2; therefore, serum samples previously found to be able to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts of the metabolites of its encoded enzyme protein product. |
---|