Cargando…
Ion channel noise shapes the electrical activity of endocrine cells
Endocrine cells in the pituitary gland typically display either spiking or bursting electrical activity, which is related to the level of hormone secretion. Recent work, which combines mathematical modelling with dynamic clamp experiments, suggests the difference is due to the presence or absence of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162531/ https://www.ncbi.nlm.nih.gov/pubmed/32251433 http://dx.doi.org/10.1371/journal.pcbi.1007769 |
_version_ | 1783523051195858944 |
---|---|
author | Richards, David M. Walker, Jamie J. Tabak, Joel |
author_facet | Richards, David M. Walker, Jamie J. Tabak, Joel |
author_sort | Richards, David M. |
collection | PubMed |
description | Endocrine cells in the pituitary gland typically display either spiking or bursting electrical activity, which is related to the level of hormone secretion. Recent work, which combines mathematical modelling with dynamic clamp experiments, suggests the difference is due to the presence or absence of a few large-conductance potassium channels. Since endocrine cells only contain a handful of these channels, it is likely that stochastic effects play an important role in the pattern of electrical activity. Here, for the first time, we explicitly determine the effect of such noise by studying a mathematical model that includes the realistic noisy opening and closing of ion channels. This allows us to investigate how noise affects the electrical activity, examine the origin of spiking and bursting, and determine which channel types are responsible for the greatest noise. Further, for the first time, we address the role of cell size in endocrine cell electrical activity, finding that larger cells typically display more bursting, while the smallest cells almost always only exhibit spiking behaviour. |
format | Online Article Text |
id | pubmed-7162531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71625312020-04-24 Ion channel noise shapes the electrical activity of endocrine cells Richards, David M. Walker, Jamie J. Tabak, Joel PLoS Comput Biol Research Article Endocrine cells in the pituitary gland typically display either spiking or bursting electrical activity, which is related to the level of hormone secretion. Recent work, which combines mathematical modelling with dynamic clamp experiments, suggests the difference is due to the presence or absence of a few large-conductance potassium channels. Since endocrine cells only contain a handful of these channels, it is likely that stochastic effects play an important role in the pattern of electrical activity. Here, for the first time, we explicitly determine the effect of such noise by studying a mathematical model that includes the realistic noisy opening and closing of ion channels. This allows us to investigate how noise affects the electrical activity, examine the origin of spiking and bursting, and determine which channel types are responsible for the greatest noise. Further, for the first time, we address the role of cell size in endocrine cell electrical activity, finding that larger cells typically display more bursting, while the smallest cells almost always only exhibit spiking behaviour. Public Library of Science 2020-04-06 /pmc/articles/PMC7162531/ /pubmed/32251433 http://dx.doi.org/10.1371/journal.pcbi.1007769 Text en © 2020 Richards et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Richards, David M. Walker, Jamie J. Tabak, Joel Ion channel noise shapes the electrical activity of endocrine cells |
title | Ion channel noise shapes the electrical activity of endocrine cells |
title_full | Ion channel noise shapes the electrical activity of endocrine cells |
title_fullStr | Ion channel noise shapes the electrical activity of endocrine cells |
title_full_unstemmed | Ion channel noise shapes the electrical activity of endocrine cells |
title_short | Ion channel noise shapes the electrical activity of endocrine cells |
title_sort | ion channel noise shapes the electrical activity of endocrine cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162531/ https://www.ncbi.nlm.nih.gov/pubmed/32251433 http://dx.doi.org/10.1371/journal.pcbi.1007769 |
work_keys_str_mv | AT richardsdavidm ionchannelnoiseshapestheelectricalactivityofendocrinecells AT walkerjamiej ionchannelnoiseshapestheelectricalactivityofendocrinecells AT tabakjoel ionchannelnoiseshapestheelectricalactivityofendocrinecells |