Cargando…
Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment
Human learning is one of the main topics in psychology and cognitive neuroscience. The analysis of experimental data, e.g. from category learning experiments, is a major challenge due to confounding factors related to perceptual processing, feedback value, response selection, as well as inter-indivi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162940/ https://www.ncbi.nlm.nih.gov/pubmed/32300111 http://dx.doi.org/10.1038/s41598-020-61703-x |
_version_ | 1783523123929284608 |
---|---|
author | Abolfazli, Amir Brechmann, André Wolff, Susann Spiliopoulou, Myra |
author_facet | Abolfazli, Amir Brechmann, André Wolff, Susann Spiliopoulou, Myra |
author_sort | Abolfazli, Amir |
collection | PubMed |
description | Human learning is one of the main topics in psychology and cognitive neuroscience. The analysis of experimental data, e.g. from category learning experiments, is a major challenge due to confounding factors related to perceptual processing, feedback value, response selection, as well as inter-individual differences in learning progress due to differing strategies or skills. We use machine learning to investigate (Q1) how participants of an auditory category-learning experiment evolve towards learning, (Q2) how participant performance saturates and (Q3) how early we can differentiate whether a participant has learned the categories or not. We found that a Gaussian Mixture Model describes well the evolution of participant performance and serves as basis for identifying influencing factors of task configuration (Q1). We found early saturation trends (Q2) and that CatBoost, an advanced classification algorithm, can separate between participants who learned the categories and those who did not, well before the end of the learning session, without much degradation of separation quality (Q3). Our results show that machine learning can model participant dynamics, identify influencing factors of task design and performance trends. This will help to improve computational models of auditory category learning and define suitable time points for interventions into learning, e.g. by tutorial systems. |
format | Online Article Text |
id | pubmed-7162940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-71629402020-04-23 Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment Abolfazli, Amir Brechmann, André Wolff, Susann Spiliopoulou, Myra Sci Rep Article Human learning is one of the main topics in psychology and cognitive neuroscience. The analysis of experimental data, e.g. from category learning experiments, is a major challenge due to confounding factors related to perceptual processing, feedback value, response selection, as well as inter-individual differences in learning progress due to differing strategies or skills. We use machine learning to investigate (Q1) how participants of an auditory category-learning experiment evolve towards learning, (Q2) how participant performance saturates and (Q3) how early we can differentiate whether a participant has learned the categories or not. We found that a Gaussian Mixture Model describes well the evolution of participant performance and serves as basis for identifying influencing factors of task configuration (Q1). We found early saturation trends (Q2) and that CatBoost, an advanced classification algorithm, can separate between participants who learned the categories and those who did not, well before the end of the learning session, without much degradation of separation quality (Q3). Our results show that machine learning can model participant dynamics, identify influencing factors of task design and performance trends. This will help to improve computational models of auditory category learning and define suitable time points for interventions into learning, e.g. by tutorial systems. Nature Publishing Group UK 2020-04-16 /pmc/articles/PMC7162940/ /pubmed/32300111 http://dx.doi.org/10.1038/s41598-020-61703-x Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Abolfazli, Amir Brechmann, André Wolff, Susann Spiliopoulou, Myra Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title | Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title_full | Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title_fullStr | Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title_full_unstemmed | Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title_short | Machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
title_sort | machine learning identifies the dynamics and influencing factors in an auditory category learning experiment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162940/ https://www.ncbi.nlm.nih.gov/pubmed/32300111 http://dx.doi.org/10.1038/s41598-020-61703-x |
work_keys_str_mv | AT abolfazliamir machinelearningidentifiesthedynamicsandinfluencingfactorsinanauditorycategorylearningexperiment AT brechmannandre machinelearningidentifiesthedynamicsandinfluencingfactorsinanauditorycategorylearningexperiment AT wolffsusann machinelearningidentifiesthedynamicsandinfluencingfactorsinanauditorycategorylearningexperiment AT spiliopouloumyra machinelearningidentifiesthedynamicsandinfluencingfactorsinanauditorycategorylearningexperiment |