Cargando…
Whitish daytime radiative cooling using diffuse reflection of non-resonant silica nanoshells
Daytime radiative cooling offers efficient passive cooling of objects by tailoring their spectral responses, holding great promise for green photonics applications. A specular reflector has been utilized in cooling devices to minimize sunlight absorption, but such a glaring surface is visually less...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162956/ https://www.ncbi.nlm.nih.gov/pubmed/32300158 http://dx.doi.org/10.1038/s41598-020-63591-7 |
Sumario: | Daytime radiative cooling offers efficient passive cooling of objects by tailoring their spectral responses, holding great promise for green photonics applications. A specular reflector has been utilized in cooling devices to minimize sunlight absorption, but such a glaring surface is visually less appealing, thus undesirable for public use. Here, by exploiting strong diffuse reflection of silica nanoshells in a polymer matrix, daytime radiative cooling below the ambient temperature is experimentally demonstrated, while showing whitish color under sunlight. The cooling device consists of a poly(methyl methacrylate) layer with randomly distributed silica nanoshells and a polydimethylsiloxane (PDMS) layer on an Ag mirror. The non-resonant nanoshells exhibit uniform diffuse reflection over the solar spectrum, while fully transparent for a selective thermal radiation from the underneath PDMS layer. In the temperature measurement under the sunlight irradiation, the device shows 2.3 °C cooler than the ambient, which is comparable to or even better than the conventional device without the nanoshells. Our approach provides a simple yet powerful nanophotonic structure for realizing a scalable and practical daytime radiative cooling device without a glaring reflective surface. |
---|