Cargando…

Elementary teachers’ attitudes and beliefs about spatial thinking and mathematics

Considering how spatial thinking connects to Science, Technology, Engineering and Mathematics (STEM) outcomes, recent studies have evaluated how spatial interventions impact elementary students’ math learning. While promising, these interventions tend to overlook other factors affecting math learnin...

Descripción completa

Detalles Bibliográficos
Autores principales: Burte, Heather, Gardony, Aaron L., Hutton, Allyson, Taylor, Holly A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163003/
https://www.ncbi.nlm.nih.gov/pubmed/32300890
http://dx.doi.org/10.1186/s41235-020-00221-w
Descripción
Sumario:Considering how spatial thinking connects to Science, Technology, Engineering and Mathematics (STEM) outcomes, recent studies have evaluated how spatial interventions impact elementary students’ math learning. While promising, these interventions tend to overlook other factors affecting math learning; perceptions of math abilities, beliefs about math, and math anxiety can also impact math performance. Additionally, perceptions of spatial skill and spatial anxiety impact spatial performance. This study investigated how elementary teachers’ perceptions of spatial thinking connects with math perceptions. Specifically, we focused on teachers’ attitudes and beliefs around three topics: teaching and learning math, spatial abilities, and spatial thinking in mathematics. We found that lower spatial anxiety related to lower anxiety about teaching math, greater alignment between math beliefs and math standards, and greater efficacy in teaching and learning math. Further, a factor analysis showed one factor that connected stereotypical math thinking with both math and spatial anxiety, and another that connected spatial competencies, teaching and learning math, and spatial thinking within math. To further evaluate spatial thinking in math, we introduced a math categorization and verified it using teachers’ ratings of teaching difficulty, visualization helpfulness, and spatial-thinking involvement. Structural equation models revealed that the level of spatial-thinking categorization was the best model of all three of the teachers’ ratings. Overall, results showed numerous connections between teachers’ attitudes and beliefs about mathematics and spatial thinking. Future intervention studies should consider teachers who are spatial and/or math-anxious, and future research should investigate the role of stereotypical thinking in spatial and math anxiety.