Cargando…
A comparison of methods accounting for batch effects in differential expression analysis of UMI count based single cell RNA sequencing
Accounting for batch effects, especially latent batch effects, in differential expression (DE) analysis is critical for identifying true biological effects. Single-cell RNA sequencing (scRNA-seq) is a powerful tool for quantifying cell-to-cell variation in transcript abundance and characterizing cel...
Autores principales: | Chen, Wenan, Zhang, Silu, Williams, Justin, Ju, Bensheng, Shaner, Bridget, Easton, John, Wu, Gang, Chen, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163294/ https://www.ncbi.nlm.nih.gov/pubmed/32322368 http://dx.doi.org/10.1016/j.csbj.2020.03.026 |
Ejemplares similares
-
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
por: Chen, Wenan, et al.
Publicado: (2018) -
zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs
por: Parekh, Swati, et al.
Publicado: (2018) -
UMI-Gen: A UMI-based read simulator for variant calling evaluation in paired-end sequencing NGS libraries
por: Sater, Vincent, et al.
Publicado: (2020) -
Demystifying “drop-outs” in single-cell UMI data
por: Kim, Tae Hyun, et al.
Publicado: (2020) -
Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data
por: Cheng, Changde, et al.
Publicado: (2019)