Cargando…
Leveraging Eye Tracking to Prioritize Relevant Medical Record Data: Comparative Machine Learning Study
BACKGROUND: Electronic medical record (EMR) systems capture large amounts of data per patient and present that data to physicians with little prioritization. Without prioritization, physicians must mentally identify and collate relevant data, an activity that can lead to cognitive overload. To mitig...
Autores principales: | King, Andrew J, Cooper, Gregory F, Clermont, Gilles, Hochheiser, Harry, Hauskrecht, Milos, Sittig, Dean F, Visweswaran, Shyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163414/ https://www.ncbi.nlm.nih.gov/pubmed/32238342 http://dx.doi.org/10.2196/15876 |
Ejemplares similares
-
Modeling physician variability to prioritize relevant medical record information
por: Tajgardoon, Mohammadamin, et al.
Publicado: (2020) -
Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR
por: King, Andrew J., et al.
Publicado: (2017) -
Evaluation of eye tracking for a decision support application
por: Visweswaran, Shyam, et al.
Publicado: (2021) -
A simple electronic medical record system designed for research
por: King, Andrew J, et al.
Publicado: (2021) -
An Algorithm for Network-Based Gene Prioritization That Encodes Knowledge Both in Nodes and in Links
por: Kimmel, Chad, et al.
Publicado: (2013)