Cargando…
Activated Schwann cells and increased inflammatory cytokines IL‐1β, IL‐6, and TNF‐α in patients' sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson's disease
AIMS: Neuroinflammation is one of the most important processes in the pathogenesis of Parkinson's disease (PD). Sensory disturbances are common in patients with PD, but the underlying pathophysiological mechanisms remain unknown. This study aimed to characterize the activation of Schwann cells...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163790/ https://www.ncbi.nlm.nih.gov/pubmed/31828965 http://dx.doi.org/10.1111/cns.13282 |
Sumario: | AIMS: Neuroinflammation is one of the most important processes in the pathogenesis of Parkinson's disease (PD). Sensory disturbances are common in patients with PD, but the underlying pathophysiological mechanisms remain unknown. This study aimed to characterize the activation of Schwann cells (SCs) and the increase of expression of inflammatory cytokines IL‐1β, IL‐6, and TNF‐α in the sural nerve of PD, and further explore whether peripheral nerve inflammation is the cause of PD sensory disturbances. METHODS: A total of 14 patients with PD (including 5 with sensory disturbances and 9 without sensory disturbances) and 6 controls were included. The excitation and conduction function of sural nerve was detected by sural nerve electrophysiological examination. With sural nerve biopsy samples, ultrastructural changes of sural nerve were observed by electron microscopy; Schwann cell biomarker glial fibrillary acid protein (GFAP) and inflammatory cytokines including interleukin‐1beta (IL‐1β), interleukin 6 (IL‐6), and tumor necrosis factor‐alpha (TNF‐α) were detected by immunohistochemistry, and the outcome of immunostaining slice was semiquantitatively counted; double immunofluorescence was used to identify the locus immunoreactive for inflammatory cytokines. RESULTS: Compared with healthy controls, nerve conduction velocity (NCV) slowed down and sensory nerve action potential (SNAP) amplitude decreased in PD patients, accompanied by axonal degeneration and demyelinating lesions, and expression of GFAP and inflammatory cytokines was increased. Inflammatory cytokines were significantly colocalized with GFAP and slightly colocalized with NF. These indicators did not differ significantly between PD patients with and without sensory disturbances. CONCLUSION: Our study results suggest that peripheral sensory nerve injury exists in PD patients, accompanied by Schwann cell activation and inflammation, thus demonstrate peripheral nerve inflammation participates in the pathophysiological process of PD but it is not necessarily related to the patient's sensory disturbance. |
---|