Cargando…
Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity wit...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/ https://www.ncbi.nlm.nih.gov/pubmed/32328579 http://dx.doi.org/10.34133/2020/9085782 |
Sumario: | The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices. |
---|