Cargando…

Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides

The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Xuanmiao, Hu, Guangwei, Zhao, Wenchao, Wang, Kai, Sun, Shang, Zhu, Rui, Wu, Jing, Liu, Weiwei, Loh, Kian Ping, Wee, Andrew Thye Shen, Wang, Bing, Alù, Andrea, Qiu, Cheng-Wei, Lu, Peixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/
https://www.ncbi.nlm.nih.gov/pubmed/32328579
http://dx.doi.org/10.34133/2020/9085782
Descripción
Sumario:The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices.