Cargando…

Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides

The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Xuanmiao, Hu, Guangwei, Zhao, Wenchao, Wang, Kai, Sun, Shang, Zhu, Rui, Wu, Jing, Liu, Weiwei, Loh, Kian Ping, Wee, Andrew Thye Shen, Wang, Bing, Alù, Andrea, Qiu, Cheng-Wei, Lu, Peixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/
https://www.ncbi.nlm.nih.gov/pubmed/32328579
http://dx.doi.org/10.34133/2020/9085782
_version_ 1783523226048004096
author Hong, Xuanmiao
Hu, Guangwei
Zhao, Wenchao
Wang, Kai
Sun, Shang
Zhu, Rui
Wu, Jing
Liu, Weiwei
Loh, Kian Ping
Wee, Andrew Thye Shen
Wang, Bing
Alù, Andrea
Qiu, Cheng-Wei
Lu, Peixiang
author_facet Hong, Xuanmiao
Hu, Guangwei
Zhao, Wenchao
Wang, Kai
Sun, Shang
Zhu, Rui
Wu, Jing
Liu, Weiwei
Loh, Kian Ping
Wee, Andrew Thye Shen
Wang, Bing
Alù, Andrea
Qiu, Cheng-Wei
Lu, Peixiang
author_sort Hong, Xuanmiao
collection PubMed
description The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices.
format Online
Article
Text
id pubmed-7163797
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-71637972020-04-23 Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Loh, Kian Ping Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang Research (Wash D C) Research Article The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices. AAAS 2020-04-05 /pmc/articles/PMC7163797/ /pubmed/32328579 http://dx.doi.org/10.34133/2020/9085782 Text en Copyright © 2020 Xuanmiao Hong et al. http://creativecommons.org/licenses/by/4.0/ Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).
spellingShingle Research Article
Hong, Xuanmiao
Hu, Guangwei
Zhao, Wenchao
Wang, Kai
Sun, Shang
Zhu, Rui
Wu, Jing
Liu, Weiwei
Loh, Kian Ping
Wee, Andrew Thye Shen
Wang, Bing
Alù, Andrea
Qiu, Cheng-Wei
Lu, Peixiang
Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title_full Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title_fullStr Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title_full_unstemmed Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title_short Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
title_sort structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/
https://www.ncbi.nlm.nih.gov/pubmed/32328579
http://dx.doi.org/10.34133/2020/9085782
work_keys_str_mv AT hongxuanmiao structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT huguangwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT zhaowenchao structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT wangkai structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT sunshang structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT zhurui structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT wujing structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT liuweiwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT lohkianping structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT weeandrewthyeshen structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT wangbing structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT aluandrea structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT qiuchengwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides
AT lupeixiang structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides