Cargando…
Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides
The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity wit...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/ https://www.ncbi.nlm.nih.gov/pubmed/32328579 http://dx.doi.org/10.34133/2020/9085782 |
_version_ | 1783523226048004096 |
---|---|
author | Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Loh, Kian Ping Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang |
author_facet | Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Loh, Kian Ping Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang |
author_sort | Hong, Xuanmiao |
collection | PubMed |
description | The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices. |
format | Online Article Text |
id | pubmed-7163797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-71637972020-04-23 Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Loh, Kian Ping Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang Research (Wash D C) Research Article The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ((2)) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices. AAAS 2020-04-05 /pmc/articles/PMC7163797/ /pubmed/32328579 http://dx.doi.org/10.34133/2020/9085782 Text en Copyright © 2020 Xuanmiao Hong et al. http://creativecommons.org/licenses/by/4.0/ Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0). |
spellingShingle | Research Article Hong, Xuanmiao Hu, Guangwei Zhao, Wenchao Wang, Kai Sun, Shang Zhu, Rui Wu, Jing Liu, Weiwei Loh, Kian Ping Wee, Andrew Thye Shen Wang, Bing Alù, Andrea Qiu, Cheng-Wei Lu, Peixiang Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title | Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title_full | Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title_fullStr | Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title_full_unstemmed | Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title_short | Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides |
title_sort | structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163797/ https://www.ncbi.nlm.nih.gov/pubmed/32328579 http://dx.doi.org/10.34133/2020/9085782 |
work_keys_str_mv | AT hongxuanmiao structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT huguangwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT zhaowenchao structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT wangkai structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT sunshang structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT zhurui structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT wujing structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT liuweiwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT lohkianping structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT weeandrewthyeshen structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT wangbing structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT aluandrea structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT qiuchengwei structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides AT lupeixiang structuringnonlinearwavefrontemittedfrommonolayertransitionmetaldichalcogenides |