Cargando…
Evaluation of an online training tool for scoring programmed cell death ligand-1 (PD-L1) diagnostic tests for lung cancer
BACKGROUND: Numerous studies indicate that higher tumour programmed cell death ligand-1 (PD-L1) expression is associated with greater response to anti-programmed cell death-1 (PD-1)/PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). In the era of precision medicine, there is a need to provid...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164334/ https://www.ncbi.nlm.nih.gov/pubmed/32303234 http://dx.doi.org/10.1186/s13000-020-00953-9 |
Sumario: | BACKGROUND: Numerous studies indicate that higher tumour programmed cell death ligand-1 (PD-L1) expression is associated with greater response to anti-programmed cell death-1 (PD-1)/PD-L1 immunotherapy in non-small cell lung cancer (NSCLC). In the era of precision medicine, there is a need to provide reliable, standardised training for pathologists to improve their accuracy of interpretation and scoring, as the results are used directly to inform clinical decisions. Here we present findings regarding reader reproducibility of PD-L1 tumour cell (TC) staining scoring for NSCLC using a PD-L1 e-trainer tool as part of a PD-L1 immunohistochemistry reader training course. METHODS: The PD-L1 training course was developed based on the use of VENTANA PD-L1 (SP263) and Dako PD-L1 IHC PharmDx 22C3 stained NSCLC samples in combination with a PD-L1 e-trainer tool. Five-hundred formalin-fixed, paraffin-embedded archival samples were obtained from commercial sources and stained for PD-L1. Slides were scored by two expert pathologists, then scanned to produce digital images and re-scored. Thirty-three cases were selected and sorted into three sets: a training set and two self-assessment tests (pre-test and ‘competence’ test). Participants (all selected board-certified pathologists) received face-to-face training including use of an e-trainer tool. Statistical analyses were performed using the competence test set. Overall percentage agreement (OPA) was assessed between the participant pathologists’ registered scores and the reference scores assigned by expert pathologists at clinically relevant PD-L1 cut-offs (≥1%, ≥25% and ≥ 50%). RESULTS: Seven sessions were held and 69 participant pathologists completed the training. Inter-reader concordance indicated high OPA (85–95%) for PD-L1 TC scoring at clinically relevant cut-offs, with Fleiss’ Kappa > 0.5. CONCLUSIONS: Use of this web-based training tool incorporated into classroom-style training was associated with an overall moderately good level of inter-reader reproducibility at key cut-offs for TC PD-L1 expression testing in NSCLC. Overall, the online training tool offers a means of standardised training for practising pathologists in a clinical setting. |
---|