Cargando…
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
Intensive care data are valuable for improvement of health care, policy making and many other purposes. Vast amount of such data are stored in different locations, on many different devices and in different data silos. Sharing data among different sources is a big challenge due to regulatory, operat...
Autores principales: | Huang, Li, Yin, Yifeng, Fu, Zeng, Zhang, Shifa, Deng, Hao, Liu, Dianbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164603/ https://www.ncbi.nlm.nih.gov/pubmed/32302316 http://dx.doi.org/10.1371/journal.pone.0230706 |
Ejemplares similares
-
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Chagas Parasite Detection in Blood Images Using AdaBoost
por: Uc-Cetina, Víctor, et al.
Publicado: (2015) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009) -
Reinforced AdaBoost Learning for Object Detection with Local Pattern Representations
por: Lee, Younghyun, et al.
Publicado: (2013)