Cargando…
Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164649/ https://www.ncbi.nlm.nih.gov/pubmed/32302332 http://dx.doi.org/10.1371/journal.pone.0231397 |
_version_ | 1783523330313158656 |
---|---|
author | Boukhris, Ines Smaoui, Slim Ennouri, Karim Morjene, Nawres Farhat-Khemakhem, Ameny Blibech, Monia Alghamdi, Othman A. Chouayekh, Hichem |
author_facet | Boukhris, Ines Smaoui, Slim Ennouri, Karim Morjene, Nawres Farhat-Khemakhem, Ameny Blibech, Monia Alghamdi, Othman A. Chouayekh, Hichem |
author_sort | Boukhris, Ines |
collection | PubMed |
description | The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is ‘generally recognized as safe’ (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life. |
format | Online Article Text |
id | pubmed-7164649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71646492020-04-22 Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model Boukhris, Ines Smaoui, Slim Ennouri, Karim Morjene, Nawres Farhat-Khemakhem, Ameny Blibech, Monia Alghamdi, Othman A. Chouayekh, Hichem PLoS One Research Article The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is ‘generally recognized as safe’ (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life. Public Library of Science 2020-04-17 /pmc/articles/PMC7164649/ /pubmed/32302332 http://dx.doi.org/10.1371/journal.pone.0231397 Text en © 2020 Boukhris et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Boukhris, Ines Smaoui, Slim Ennouri, Karim Morjene, Nawres Farhat-Khemakhem, Ameny Blibech, Monia Alghamdi, Othman A. Chouayekh, Hichem Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title | Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title_full | Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title_fullStr | Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title_full_unstemmed | Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title_short | Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
title_sort | towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164649/ https://www.ncbi.nlm.nih.gov/pubmed/32302332 http://dx.doi.org/10.1371/journal.pone.0231397 |
work_keys_str_mv | AT boukhrisines towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT smaouislim towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT ennourikarim towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT morjenenawres towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT farhatkhemakhemameny towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT blibechmonia towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT alghamdiothmana towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel AT chouayekhhichem towardsunderstandingtheantagonisticactivityofphyticacidagainstcommonfoodbornebacterialpathogensusingagenerallinearmodel |