Cargando…

NeuroQuery, comprehensive meta-analysis of human brain mapping

Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-an...

Descripción completa

Detalles Bibliográficos
Autores principales: Dockès, Jérôme, Poldrack, Russell A, Primet, Romain, Gözükan, Hande, Yarkoni, Tal, Suchanek, Fabian, Thirion, Bertrand, Varoquaux, Gaël
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164961/
https://www.ncbi.nlm.nih.gov/pubmed/32129761
http://dx.doi.org/10.7554/eLife.53385
_version_ 1783523390788730880
author Dockès, Jérôme
Poldrack, Russell A
Primet, Romain
Gözükan, Hande
Yarkoni, Tal
Suchanek, Fabian
Thirion, Bertrand
Varoquaux, Gaël
author_facet Dockès, Jérôme
Poldrack, Russell A
Primet, Romain
Gözükan, Hande
Yarkoni, Tal
Suchanek, Fabian
Thirion, Bertrand
Varoquaux, Gaël
author_sort Dockès, Jérôme
collection PubMed
description Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.
format Online
Article
Text
id pubmed-7164961
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-71649612020-04-20 NeuroQuery, comprehensive meta-analysis of human brain mapping Dockès, Jérôme Poldrack, Russell A Primet, Romain Gözükan, Hande Yarkoni, Tal Suchanek, Fabian Thirion, Bertrand Varoquaux, Gaël eLife Neuroscience Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model predicts the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain. eLife Sciences Publications, Ltd 2020-03-04 /pmc/articles/PMC7164961/ /pubmed/32129761 http://dx.doi.org/10.7554/eLife.53385 Text en © 2020, Dockès et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Dockès, Jérôme
Poldrack, Russell A
Primet, Romain
Gözükan, Hande
Yarkoni, Tal
Suchanek, Fabian
Thirion, Bertrand
Varoquaux, Gaël
NeuroQuery, comprehensive meta-analysis of human brain mapping
title NeuroQuery, comprehensive meta-analysis of human brain mapping
title_full NeuroQuery, comprehensive meta-analysis of human brain mapping
title_fullStr NeuroQuery, comprehensive meta-analysis of human brain mapping
title_full_unstemmed NeuroQuery, comprehensive meta-analysis of human brain mapping
title_short NeuroQuery, comprehensive meta-analysis of human brain mapping
title_sort neuroquery, comprehensive meta-analysis of human brain mapping
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164961/
https://www.ncbi.nlm.nih.gov/pubmed/32129761
http://dx.doi.org/10.7554/eLife.53385
work_keys_str_mv AT dockesjerome neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT poldrackrussella neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT primetromain neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT gozukanhande neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT yarkonital neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT suchanekfabian neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT thirionbertrand neuroquerycomprehensivemetaanalysisofhumanbrainmapping
AT varoquauxgael neuroquerycomprehensivemetaanalysisofhumanbrainmapping