Cargando…
Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition
OBJECTIVE: To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164966/ https://www.ncbi.nlm.nih.gov/pubmed/32337341 http://dx.doi.org/10.1212/NXG.0000000000000414 |
_version_ | 1783523391757615104 |
---|---|
author | Rosenblum, Jared S. Cappadona, Anthony J. Argersinger, Davis P. Pang, Ying Wang, Herui Nazari, Matthew A. Munasinghe, Jeeva P. Donahue, Danielle R. Jha, Abhishek Smirniotopoulos, James G. Miettinen, Markku M. Knutsen, Russell H. Kozel, Beth A. Zhuang, Zhengping Pacak, Karel Heiss, John D. |
author_facet | Rosenblum, Jared S. Cappadona, Anthony J. Argersinger, Davis P. Pang, Ying Wang, Herui Nazari, Matthew A. Munasinghe, Jeeva P. Donahue, Danielle R. Jha, Abhishek Smirniotopoulos, James G. Miettinen, Markku M. Knutsen, Russell H. Kozel, Beth A. Zhuang, Zhengping Pacak, Karel Heiss, John D. |
author_sort | Rosenblum, Jared S. |
collection | PubMed |
description | OBJECTIVE: To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia. METHODS: Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations. RESULTS: All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse. CONCLUSIONS: This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition. |
format | Online Article Text |
id | pubmed-7164966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-71649662020-04-24 Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition Rosenblum, Jared S. Cappadona, Anthony J. Argersinger, Davis P. Pang, Ying Wang, Herui Nazari, Matthew A. Munasinghe, Jeeva P. Donahue, Danielle R. Jha, Abhishek Smirniotopoulos, James G. Miettinen, Markku M. Knutsen, Russell H. Kozel, Beth A. Zhuang, Zhengping Pacak, Karel Heiss, John D. Neurol Genet Article OBJECTIVE: To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia. METHODS: Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations. RESULTS: All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse. CONCLUSIONS: This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition. Wolters Kluwer 2020-04-01 /pmc/articles/PMC7164966/ /pubmed/32337341 http://dx.doi.org/10.1212/NXG.0000000000000414 Text en Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Article Rosenblum, Jared S. Cappadona, Anthony J. Argersinger, Davis P. Pang, Ying Wang, Herui Nazari, Matthew A. Munasinghe, Jeeva P. Donahue, Danielle R. Jha, Abhishek Smirniotopoulos, James G. Miettinen, Markku M. Knutsen, Russell H. Kozel, Beth A. Zhuang, Zhengping Pacak, Karel Heiss, John D. Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title | Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title_full | Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title_fullStr | Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title_full_unstemmed | Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title_short | Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition |
title_sort | neuraxial dysraphism in epas1-associated syndrome due to improper mesenchymal transition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164966/ https://www.ncbi.nlm.nih.gov/pubmed/32337341 http://dx.doi.org/10.1212/NXG.0000000000000414 |
work_keys_str_mv | AT rosenblumjareds neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT cappadonaanthonyj neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT argersingerdavisp neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT pangying neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT wangherui neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT nazarimatthewa neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT munasinghejeevap neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT donahuedanieller neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT jhaabhishek neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT smirniotopoulosjamesg neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT miettinenmarkkum neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT knutsenrussellh neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT kozelbetha neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT zhuangzhengping neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT pacakkarel neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition AT heissjohnd neuraxialdysraphisminepas1associatedsyndromeduetoimpropermesenchymaltransition |