Cargando…
Cellulose nanofiber dispersion as a new submucosal injection material for endoscopic treatment: preliminary experimental study
Background and aims Although various solutions have been tested for submucosal injections during endoscopic treatment, the ideal solution has not been established. We investigated the suitability of a cellulose nanofiber (CNF) dispersion with high viscosity and thixotropy as a potential submucosal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
© Georg Thieme Verlag KG
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165001/ https://www.ncbi.nlm.nih.gov/pubmed/32355880 http://dx.doi.org/10.1055/a-1119-6387 |
Sumario: | Background and aims Although various solutions have been tested for submucosal injections during endoscopic treatment, the ideal solution has not been established. We investigated the suitability of a cellulose nanofiber (CNF) dispersion with high viscosity and thixotropy as a potential submucosal injection material for endoscopic treatment. Methods We evaluated the catheter injectability and mucosa-elevating capacity of CNF dispersion compared with sodium hyaluronate (SH) solution, which has been reported to be a promising submucosal injection solution. The catheter injectability of CNF dispersion was examined under conditions equivalent to those used clinically in endoscopic treatment. The mucosa-elevating capacity of CNF dispersion was examined in porcine stomachs. Results There was no significant difference between the catheter injectability of 0.4 % CNF dispersion and 0.4 % SH solutions; however, 0.4 % CNF dispersion maintained significantly higher and longer elevation of the submucosal layer than 0.4 % SH solution. A clear separation of the mucosal layer from the underlying muscle layer was achieved by injecting 0.4 % CNF dispersion. Conclusion This preliminary study suggests that CNF dispersion could be an ideal submucosal injection material for endoscopic treatment because of its unique high thixotropy index. |
---|