Cargando…
Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens
KEY MESSAGE: Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. ABSTRACT: Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165133/ https://www.ncbi.nlm.nih.gov/pubmed/32055924 http://dx.doi.org/10.1007/s00299-020-02517-z |
Sumario: | KEY MESSAGE: Cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis (AaC4H) was functionally expressed in the moss Physcomitrella patens and characterized at biochemical and molecular levels. ABSTRACT: Cinnamic acid 4-hydroxylase (C4H), a cytochrome P450-dependent hydroxylase, catalyzes the formation of 4-coumaric acid (=4-hydroxycinnamic acid) from trans-cinnamic acid. In the hornwort Anthoceros agrestis (Aa), this enzyme is supposed to be involved in the biosynthesis of rosmarinic acid (a caffeic acid ester of 3-(3,4-dihydroxyphenyl)lactic acid) and other related compounds. The coding sequence of AaC4H (CYP73A260) was expressed in the moss Physcomitrella patens (Pp_AaC4H). Protein extracts from the transformed moss showed considerably increased C4H activity driven by NADPH:cytochrome P450 reductase of the moss. Since Physcomitrella has own putative cinnamic acid 4-hydroxylases, enzyme characterization was carried out in parallel with the untransformed Physcomitrella wild type (Pp_WT). Apparent K(m)-values for cinnamic acid and NADPH were determined to be at 17.3 µM and 88.0 µM for Pp_AaC4H and 25.1 µM and 92.3 µM for Pp_WT, respectively. Expression levels of AaC4H as well as two Physcomitrella patens C4H isoforms were analyzed by quantitative real-time PCR. While PpC4H_1 displayed constantly low levels of expression during the whole 21-day culture period, AaC4H and PpC4H_2 increased their expression during the first 6–8 days of the culture period and then decreased again. This work describes the biochemical in vitro characterization of a cytochrome P450-dependent enzyme, namely C4H, heterologously expressed in the haploid model plant Physcomitrella patens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00299-020-02517-z) contains supplementary material, which is available to authorized users. |
---|