Cargando…
Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography
BACKGROUND: Automatically detecting and quantifying pneumothorax on chest computed tomography (CT) may impact clinical decision-making. Machine learning methods published so far struggle with the heterogeneity of technical parameters and the presence of additional pathologies, highlighting the impor...
Autores principales: | Röhrich, Sebastian, Schlegl, Thomas, Bardach, Constanze, Prosch, Helmut, Langs, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165213/ https://www.ncbi.nlm.nih.gov/pubmed/32303861 http://dx.doi.org/10.1186/s41747-020-00152-7 |
Ejemplares similares
-
Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem
por: Hofmanninger, Johannes, et al.
Publicado: (2020) -
Correction to: Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Machine learning: from radiomics to discovery and routine
por: Langs, G., et al.
Publicado: (2018) -
Hemoptysis: Beyond routine chest computed tomography and bronchoscopy
por: Mall, Saurabh, et al.
Publicado: (2017)