Cargando…
Convergent spectral shifts to blue-green vision in mammals extends the known sensitivity of vertebrate M/LWS pigments
Daylight vision in most mammals is mediated predominantly by a middle/long wavelength-sensitive (M/LWS) pigment. Although spectral sensitivity and associated shifts in M/LWS are mainly determined by five critical sites, predicted phenotypic variation is rarely validated, and its ecological significa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165416/ https://www.ncbi.nlm.nih.gov/pubmed/32241894 http://dx.doi.org/10.1073/pnas.2002235117 |
Sumario: | Daylight vision in most mammals is mediated predominantly by a middle/long wavelength-sensitive (M/LWS) pigment. Although spectral sensitivity and associated shifts in M/LWS are mainly determined by five critical sites, predicted phenotypic variation is rarely validated, and its ecological significance is unclear. We experimentally determine spectral tuning of M/LWS pigments and show that two highly divergent taxa, the gerbil and the elephant-shrew, have undergone independent dramatic blue-green shifts to 490 nm. By generating mutant proteins, we identify additional critical sites contributing to these shifts. Our results, which extend the known range of spectral tuning of vertebrate M/LWS, provide a compelling case of functional convergence, likely related to parallel adaptive shifts from nocturnal to brighter light conditions in similar habitats. |
---|