Cargando…
Cross-Dataset Evaluation of Deep Learning Networks for Uterine Cervix Segmentation
Evidence from recent research shows that automatic visual evaluation (AVE) of photographic images of the uterine cervix using deep learning-based algorithms presents a viable solution for improving cervical cancer screening by visual inspection with acetic acid (VIA). However, a significant performa...
Autores principales: | Guo, Peng, Xue, Zhiyun, Long, L. Rodney, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167955/ https://www.ncbi.nlm.nih.gov/pubmed/31947707 http://dx.doi.org/10.3390/diagnostics10010044 |
Ejemplares similares
-
Unsupervised Deep Learning Registration of Uterine Cervix Sequence Images
por: Guo, Peng, et al.
Publicado: (2022) -
Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening
por: Guo, Peng, et al.
Publicado: (2020) -
Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images
por: Guo, Peng, et al.
Publicado: (2021) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Deep Metric Learning for Cervical Image Classification
por: PAL, ANABIK, et al.
Publicado: (2021)