Cargando…
Properties of an Antimicrobial Molecule Produced by an Escherichia coli Champion
Over recent decades, the number and frequency of severe pathogen infections have been increasing. Pathogen mitigation strategies in human medicine or in livestock operations are vital to combat emerging arsenals of bacterial virulence and defense mechanisms. Since the emergence of antimicrobial resi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168273/ https://www.ncbi.nlm.nih.gov/pubmed/31877806 http://dx.doi.org/10.3390/antibiotics9010006 |
Sumario: | Over recent decades, the number and frequency of severe pathogen infections have been increasing. Pathogen mitigation strategies in human medicine or in livestock operations are vital to combat emerging arsenals of bacterial virulence and defense mechanisms. Since the emergence of antimicrobial resistance, the competitive nature of bacteria has been considered for the potential treatment or mitigation of pathogens. Previously, we identified a strong E. coli competitor with probiotic properties producing a diffusible antimicrobial molecule(s) that inhibited the growth of Shiga toxin-producing E. coli (STEC). Our current objective was to isolate and examine the properties of this antimicrobial molecule(s). Molecules were isolated by filter sterilization after 12 h incubation, and bacterial inhibition was compared to relevant controls. Isolated antimicrobial molecule(s) and controls were subjected to temperature, pH, or protease digestion treatments. Changes in inhibition properties were evaluated by comparing the incremental cell growth in the presence of treated and untreated antimicrobial molecule(s). No treatment affected the antimicrobial molecule(s) properties of STEC inhibition, suggesting that at least one molecule produced is an efficacious microcin. The molecule persistence to physiochemical and enzymatic treatments could open a wide window to technical industry-scale applications. |
---|