Cargando…
The Elabela-APJ axis: a promising therapeutic target for heart failure
Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin–APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, al...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168569/ https://www.ncbi.nlm.nih.gov/pubmed/32314083 http://dx.doi.org/10.1007/s10741-020-09957-5 |
_version_ | 1783523669987819520 |
---|---|
author | Ma, Zheng Song, Juan-Juan Martin, Sara Yang, Xin-Chun Zhong, Jiu-Chang |
author_facet | Ma, Zheng Song, Juan-Juan Martin, Sara Yang, Xin-Chun Zhong, Jiu-Chang |
author_sort | Ma, Zheng |
collection | PubMed |
description | Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin–APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, also called Toddler or Apela), with a critical role in cardiac development and function. Activation of the ELA–APJ receptor axis exerts a wide range of physiological effects, including depressor response, positive inotropic action, diuresis, anti-inflammatory, anti-fibrotic, and anti-remodeling, leading to its cardiovascular protection. The ELA–APJ axis is essential for diverse biological processes and has been shown to regulate fluid homeostasis, myocardial contractility, vasodilation, angiogenesis, cellular differentiation, apoptosis, oxidative stress, cardiorenal fibrosis, and dysfunction. The beneficial effects of the ELA–APJ receptor system are well-established by treating hypertension, myocardial infarction, and HF. Additionally, administration of ELA protects human embryonic stem cells against apoptosis and stress-induced cell death and promotes survival and self-renewal in an APJ-independent manner (X receptor) via the phosphatidylinositol 3-kinase/Akt pathway, which may provide a new therapeutic approach for HF. Thus, targeting the ELA–APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of HF. An increased understanding of cardiovascular actions of ELA will help to develop effective interventions. This article gives an overview of the characteristics of the ELA–apelin–APJ axis and summarizes the current knowledge on its cardioprotective roles, potential mechanisms, and prospective application for acute and chronic HF. |
format | Online Article Text |
id | pubmed-7168569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-71685692020-04-20 The Elabela-APJ axis: a promising therapeutic target for heart failure Ma, Zheng Song, Juan-Juan Martin, Sara Yang, Xin-Chun Zhong, Jiu-Chang Heart Fail Rev Article Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin–APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, also called Toddler or Apela), with a critical role in cardiac development and function. Activation of the ELA–APJ receptor axis exerts a wide range of physiological effects, including depressor response, positive inotropic action, diuresis, anti-inflammatory, anti-fibrotic, and anti-remodeling, leading to its cardiovascular protection. The ELA–APJ axis is essential for diverse biological processes and has been shown to regulate fluid homeostasis, myocardial contractility, vasodilation, angiogenesis, cellular differentiation, apoptosis, oxidative stress, cardiorenal fibrosis, and dysfunction. The beneficial effects of the ELA–APJ receptor system are well-established by treating hypertension, myocardial infarction, and HF. Additionally, administration of ELA protects human embryonic stem cells against apoptosis and stress-induced cell death and promotes survival and self-renewal in an APJ-independent manner (X receptor) via the phosphatidylinositol 3-kinase/Akt pathway, which may provide a new therapeutic approach for HF. Thus, targeting the ELA–APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of HF. An increased understanding of cardiovascular actions of ELA will help to develop effective interventions. This article gives an overview of the characteristics of the ELA–apelin–APJ axis and summarizes the current knowledge on its cardioprotective roles, potential mechanisms, and prospective application for acute and chronic HF. Springer US 2020-04-20 2021 /pmc/articles/PMC7168569/ /pubmed/32314083 http://dx.doi.org/10.1007/s10741-020-09957-5 Text en © Springer Science+Business Media, LLC, part of Springer Nature 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Ma, Zheng Song, Juan-Juan Martin, Sara Yang, Xin-Chun Zhong, Jiu-Chang The Elabela-APJ axis: a promising therapeutic target for heart failure |
title | The Elabela-APJ axis: a promising therapeutic target for heart failure |
title_full | The Elabela-APJ axis: a promising therapeutic target for heart failure |
title_fullStr | The Elabela-APJ axis: a promising therapeutic target for heart failure |
title_full_unstemmed | The Elabela-APJ axis: a promising therapeutic target for heart failure |
title_short | The Elabela-APJ axis: a promising therapeutic target for heart failure |
title_sort | elabela-apj axis: a promising therapeutic target for heart failure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168569/ https://www.ncbi.nlm.nih.gov/pubmed/32314083 http://dx.doi.org/10.1007/s10741-020-09957-5 |
work_keys_str_mv | AT mazheng theelabelaapjaxisapromisingtherapeutictargetforheartfailure AT songjuanjuan theelabelaapjaxisapromisingtherapeutictargetforheartfailure AT martinsara theelabelaapjaxisapromisingtherapeutictargetforheartfailure AT yangxinchun theelabelaapjaxisapromisingtherapeutictargetforheartfailure AT zhongjiuchang theelabelaapjaxisapromisingtherapeutictargetforheartfailure AT mazheng elabelaapjaxisapromisingtherapeutictargetforheartfailure AT songjuanjuan elabelaapjaxisapromisingtherapeutictargetforheartfailure AT martinsara elabelaapjaxisapromisingtherapeutictargetforheartfailure AT yangxinchun elabelaapjaxisapromisingtherapeutictargetforheartfailure AT zhongjiuchang elabelaapjaxisapromisingtherapeutictargetforheartfailure |