Cargando…

Size-Dependent Distribution of Patient-Specific Hemodynamic Factors in Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics

Purpose: To analyze size-dependent hemodynamic factors [velocity, shear rate, blood viscosity, wall shear stress (WSS)] in unruptured cerebral aneurysms using computational fluid dynamics (CFD) based on the measured non-Newtonian model of viscosity. Methods: Twenty-one patients with unruptured aneur...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Ui Yun, Chung, Gyung Ho, Jung, Jinmu, Kwak, Hyo Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168895/
https://www.ncbi.nlm.nih.gov/pubmed/31991621
http://dx.doi.org/10.3390/diagnostics10020064
Descripción
Sumario:Purpose: To analyze size-dependent hemodynamic factors [velocity, shear rate, blood viscosity, wall shear stress (WSS)] in unruptured cerebral aneurysms using computational fluid dynamics (CFD) based on the measured non-Newtonian model of viscosity. Methods: Twenty-one patients with unruptured aneurysms formed the study cohort. Patient-specific geometric models were reconstructed for CFD analyses. Aneurysms were divided into small and large groups based on a cutoff size of 5 mm. For comparison between small and large aneurysms, 5 morphologic variables were measured. Patient-specific non-Newtonian blood viscosity was applied for more detailed CFD simulation. Quantitative and qualitative analyses of velocity, shear rate, blood viscosity, and WSS were conducted to compare small and large aneurysms. Results: Complex flow patterns were found in large aneurysms. Large aneurysms had a significantly lower shear rate (235 ± 341 s(−1)) than small aneurysms (915 ± 432 s(−1)) at peak-systole. Two times higher blood viscosity was observed in large aneurysms compared with small aneurysms. Lower WSS was found in large aneurysms (1.38 ± 1.36 Pa) than in small aneurysms (3.53 ± 1.22 Pa). All the differences in hemodynamic factors between small and large aneurysms were statistically significant. Conclusions: Large aneurysms tended to have complex flow patterns, low shear rate, high blood viscosity, and low WSS. The hemodynamic factors that we analyzed might be useful for decision making before surgical treatment of aneurysms.