Cargando…
Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation
Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still re...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168934/ https://www.ncbi.nlm.nih.gov/pubmed/32024029 http://dx.doi.org/10.3390/diagnostics10020078 |
_version_ | 1783523746000142336 |
---|---|
author | Liu, Yewei Wang, Shuncong Zhao, Xiaohui Feng, Yuanbo Bormans, Guy Swinnen, Johan Oyen, Raymond Huang, Gang Ni, Yicheng Li, Yue |
author_facet | Liu, Yewei Wang, Shuncong Zhao, Xiaohui Feng, Yuanbo Bormans, Guy Swinnen, Johan Oyen, Raymond Huang, Gang Ni, Yicheng Li, Yue |
author_sort | Liu, Yewei |
collection | PubMed |
description | Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still remains rarely explored in human liver cancers. To overcome tumor residues and regrowth after CA4P monotherapy, a novel dual targeting pan-anticancer theragnostic strategy, i.e., OncoCiDia, has been developed and shown promise previously in secondary liver tumor models. Animal model of primary liver cancer is time consuming to induce, but of value for more closely mimicking human liver cancers in terms of tumor angiogenesis, histopathological heterogeneity, cellular differentiation, tumor components, cancer progression and therapeutic response. Being increasingly adopted in VDA researches, multiparametric magnetic resonance imaging (MRI) provides imaging biomarkers to reflect in vivo tumor responses to drugs. In this article as a chapter of a doctoral thesis, we overview the construction and clinical relevance of primary and secondary liver cancer models in rodents. Target selection for CA4P therapy assisted by enhanced MRI using hepatobiliary contrast agents (CAs), and therapeutic efficacy evaluated by using MRI with a non-specific contrast agent, dynamic contrast enhanced (DCE) imaging, diffusion weighted imaging (DWI) are also described. We then summarize diverse responses among primary hepatocellular carcinomas (HCCs), secondary liver and pancreatic tumors to CA4P, which appeared to be related to tumor size, vascularity, and cellular differentiation. In general, imaging-histopathology correlation studies allow to conclude that CA4P tends to be more effective in secondary liver tumors and in more differentiated HCCs, but less effective in less differentiated HCCs and implanted pancreatic tumor. Notably, cirrhotic liver may be responsive to CA4P as well. All these could be instructive for future clinical trials of VDAs. |
format | Online Article Text |
id | pubmed-7168934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71689342020-04-20 Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation Liu, Yewei Wang, Shuncong Zhao, Xiaohui Feng, Yuanbo Bormans, Guy Swinnen, Johan Oyen, Raymond Huang, Gang Ni, Yicheng Li, Yue Diagnostics (Basel) Review Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still remains rarely explored in human liver cancers. To overcome tumor residues and regrowth after CA4P monotherapy, a novel dual targeting pan-anticancer theragnostic strategy, i.e., OncoCiDia, has been developed and shown promise previously in secondary liver tumor models. Animal model of primary liver cancer is time consuming to induce, but of value for more closely mimicking human liver cancers in terms of tumor angiogenesis, histopathological heterogeneity, cellular differentiation, tumor components, cancer progression and therapeutic response. Being increasingly adopted in VDA researches, multiparametric magnetic resonance imaging (MRI) provides imaging biomarkers to reflect in vivo tumor responses to drugs. In this article as a chapter of a doctoral thesis, we overview the construction and clinical relevance of primary and secondary liver cancer models in rodents. Target selection for CA4P therapy assisted by enhanced MRI using hepatobiliary contrast agents (CAs), and therapeutic efficacy evaluated by using MRI with a non-specific contrast agent, dynamic contrast enhanced (DCE) imaging, diffusion weighted imaging (DWI) are also described. We then summarize diverse responses among primary hepatocellular carcinomas (HCCs), secondary liver and pancreatic tumors to CA4P, which appeared to be related to tumor size, vascularity, and cellular differentiation. In general, imaging-histopathology correlation studies allow to conclude that CA4P tends to be more effective in secondary liver tumors and in more differentiated HCCs, but less effective in less differentiated HCCs and implanted pancreatic tumor. Notably, cirrhotic liver may be responsive to CA4P as well. All these could be instructive for future clinical trials of VDAs. MDPI 2020-01-31 /pmc/articles/PMC7168934/ /pubmed/32024029 http://dx.doi.org/10.3390/diagnostics10020078 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Liu, Yewei Wang, Shuncong Zhao, Xiaohui Feng, Yuanbo Bormans, Guy Swinnen, Johan Oyen, Raymond Huang, Gang Ni, Yicheng Li, Yue Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title | Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title_full | Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title_fullStr | Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title_full_unstemmed | Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title_short | Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation |
title_sort | predicting clinical efficacy of vascular disrupting agents in rodent models of primary and secondary liver cancers: an overview with imaging-histopathology correlation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168934/ https://www.ncbi.nlm.nih.gov/pubmed/32024029 http://dx.doi.org/10.3390/diagnostics10020078 |
work_keys_str_mv | AT liuyewei predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT wangshuncong predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT zhaoxiaohui predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT fengyuanbo predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT bormansguy predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT swinnenjohan predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT oyenraymond predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT huanggang predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT niyicheng predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation AT liyue predictingclinicalefficacyofvasculardisruptingagentsinrodentmodelsofprimaryandsecondarylivercancersanoverviewwithimaginghistopathologycorrelation |