Cargando…

Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer

BACKGROUND: Evidence indicates that there is an important role for long non-coding RNAs (lncRNA) in numerous cellular processes and that lncRNAs dysregulation contributes to tumor progression. Improved insight into the molecular characteristics of bladder cancer is required to predict outcomes and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yun-Zhi, Wu, Yu-Peng, Ke, Zhi-Bin, Cai, Hai, Chen, Dong-Ning, Chen, Shao-Hao, Li, Xiao-Dong, Lin, Ting-Ting, Huang, Jin-Bei, Zheng, Qing-Shui, Xue, Xue-Yi, Xu, Ning, Wei, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169439/
https://www.ncbi.nlm.nih.gov/pubmed/32277695
http://dx.doi.org/10.12659/MSM.920504
_version_ 1783523788488441856
author Lin, Yun-Zhi
Wu, Yu-Peng
Ke, Zhi-Bin
Cai, Hai
Chen, Dong-Ning
Chen, Shao-Hao
Li, Xiao-Dong
Lin, Ting-Ting
Huang, Jin-Bei
Zheng, Qing-Shui
Xue, Xue-Yi
Xu, Ning
Wei, Yong
author_facet Lin, Yun-Zhi
Wu, Yu-Peng
Ke, Zhi-Bin
Cai, Hai
Chen, Dong-Ning
Chen, Shao-Hao
Li, Xiao-Dong
Lin, Ting-Ting
Huang, Jin-Bei
Zheng, Qing-Shui
Xue, Xue-Yi
Xu, Ning
Wei, Yong
author_sort Lin, Yun-Zhi
collection PubMed
description BACKGROUND: Evidence indicates that there is an important role for long non-coding RNAs (lncRNA) in numerous cellular processes and that lncRNAs dysregulation contributes to tumor progression. Improved insight into the molecular characteristics of bladder cancer is required to predict outcomes and to develop a new rationale for targeted therapeutic strategies. Bioinformatics methods, including functional enrichment and network analysis combined with survival analysis, are required to process a large volume of data to obtain further information about differentially expressed genes (DEGs) in bladder cancer. This study aimed to explore the role of lncRNAs and their regulation network in bladder cancer. MATERIAL/METHODS: We analyzed bladder cancer data by The Cancer Genome Atlas profiling to identify differentially expressed lncRNAs in bladder cancer. The genes involved in the circlncRNAnet database were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), evolutionary relationship analysis, and protein-protein interaction (PPI) networks. RESULTS: Two new lncRNAs, ADAMTS9-AS1 and LINC00460, were shown to be differentially expressed in bladder cancer. Patients were divided into 2 groups (high expression and low expression) according to their median expression values. The overall survival and disease-free survival of patients with high ADAMTS9-AS1 bladder cancer were significantly shorter; the expression of LINC00460 had no significant correlation with survival. GO and KEGG analysis of the 2 lncRNA-related genes revealed that these lncRNAs played a vital role in tumorigenesis. Bioinformatics analysis showed that key genes related to LINC00460, including CXCL, CCL, and CSF2, may be related to the development of bladder cancer. The low expression of ADAMTS9-AS1 may influence the survival rate of bladder cancer with the hub gene as a target. CONCLUSIONS: LncRNA, including LINC00460 and ADAMTS9-AS1, might play a crucial role in the biosynthesis network of bladder cancer. Differential expression results of ADAMTS9-AS1 suggests it may be correlated with a worse prognosis and a shorter survival time. We outlined the biosynthesis network that regulates lncRNAs in bladder cancer. Further experimental data is needed to validate our results.
format Online
Article
Text
id pubmed-7169439
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-71694392020-04-22 Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer Lin, Yun-Zhi Wu, Yu-Peng Ke, Zhi-Bin Cai, Hai Chen, Dong-Ning Chen, Shao-Hao Li, Xiao-Dong Lin, Ting-Ting Huang, Jin-Bei Zheng, Qing-Shui Xue, Xue-Yi Xu, Ning Wei, Yong Med Sci Monit Clinical Research BACKGROUND: Evidence indicates that there is an important role for long non-coding RNAs (lncRNA) in numerous cellular processes and that lncRNAs dysregulation contributes to tumor progression. Improved insight into the molecular characteristics of bladder cancer is required to predict outcomes and to develop a new rationale for targeted therapeutic strategies. Bioinformatics methods, including functional enrichment and network analysis combined with survival analysis, are required to process a large volume of data to obtain further information about differentially expressed genes (DEGs) in bladder cancer. This study aimed to explore the role of lncRNAs and their regulation network in bladder cancer. MATERIAL/METHODS: We analyzed bladder cancer data by The Cancer Genome Atlas profiling to identify differentially expressed lncRNAs in bladder cancer. The genes involved in the circlncRNAnet database were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), evolutionary relationship analysis, and protein-protein interaction (PPI) networks. RESULTS: Two new lncRNAs, ADAMTS9-AS1 and LINC00460, were shown to be differentially expressed in bladder cancer. Patients were divided into 2 groups (high expression and low expression) according to their median expression values. The overall survival and disease-free survival of patients with high ADAMTS9-AS1 bladder cancer were significantly shorter; the expression of LINC00460 had no significant correlation with survival. GO and KEGG analysis of the 2 lncRNA-related genes revealed that these lncRNAs played a vital role in tumorigenesis. Bioinformatics analysis showed that key genes related to LINC00460, including CXCL, CCL, and CSF2, may be related to the development of bladder cancer. The low expression of ADAMTS9-AS1 may influence the survival rate of bladder cancer with the hub gene as a target. CONCLUSIONS: LncRNA, including LINC00460 and ADAMTS9-AS1, might play a crucial role in the biosynthesis network of bladder cancer. Differential expression results of ADAMTS9-AS1 suggests it may be correlated with a worse prognosis and a shorter survival time. We outlined the biosynthesis network that regulates lncRNAs in bladder cancer. Further experimental data is needed to validate our results. International Scientific Literature, Inc. 2020-04-11 /pmc/articles/PMC7169439/ /pubmed/32277695 http://dx.doi.org/10.12659/MSM.920504 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Clinical Research
Lin, Yun-Zhi
Wu, Yu-Peng
Ke, Zhi-Bin
Cai, Hai
Chen, Dong-Ning
Chen, Shao-Hao
Li, Xiao-Dong
Lin, Ting-Ting
Huang, Jin-Bei
Zheng, Qing-Shui
Xue, Xue-Yi
Xu, Ning
Wei, Yong
Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title_full Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title_fullStr Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title_full_unstemmed Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title_short Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer
title_sort bioinformatics analysis of the expression of key long intergenic non-protein coding rna genes in bladder cancer
topic Clinical Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169439/
https://www.ncbi.nlm.nih.gov/pubmed/32277695
http://dx.doi.org/10.12659/MSM.920504
work_keys_str_mv AT linyunzhi bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT wuyupeng bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT kezhibin bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT caihai bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT chendongning bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT chenshaohao bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT lixiaodong bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT lintingting bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT huangjinbei bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT zhengqingshui bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT xuexueyi bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT xuning bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer
AT weiyong bioinformaticsanalysisoftheexpressionofkeylongintergenicnonproteincodingrnagenesinbladdercancer