Cargando…

Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression

Sensorineural hearing loss (SNHL) is one of the major leading causes of hearing impairment, and is typically characterized by the degeneration of spiral ganglion neurons (SGNs). In previous studies by the authors, it was demonstrated that microRNA (miRNA or miR)-204-5p decreased the viability of SGN...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wenqi, Peng, Anquan, Chen, Yichao, Pang, Bo, Zhang, Zhiwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169660/
https://www.ncbi.nlm.nih.gov/pubmed/32186779
http://dx.doi.org/10.3892/ijmm.2020.4545
_version_ 1783523805518364672
author Jiang, Wenqi
Peng, Anquan
Chen, Yichao
Pang, Bo
Zhang, Zhiwen
author_facet Jiang, Wenqi
Peng, Anquan
Chen, Yichao
Pang, Bo
Zhang, Zhiwen
author_sort Jiang, Wenqi
collection PubMed
description Sensorineural hearing loss (SNHL) is one of the major leading causes of hearing impairment, and is typically characterized by the degeneration of spiral ganglion neurons (SGNs). In previous studies by the authors, it was demonstrated that microRNA (miRNA or miR)-204-5p decreased the viability of SGNs by inhibiting the expression of transmembrane protease, serine 3 (TMPRSS3), which was closely associated with the development of SGNs. However, the upstream regulatory mechanism of miR-204-5p was not fully elucidated. The present study found that an important upstream regulatory factor of miR-204-5p, long non-coding RNA (lncRNA) EBLN3P, was expressed at low levels in impaired SGNs, whereas it was expressed at high levels in normal SGNs. Mechanistic analyses demonstrated that lncRNA EBLN3P functioned as a competing endogenous RNA (ceRNA) when regulating miR-204-5p in normal SGNs. In addition, lncRNA EBLN3P regulated TMPRSS3 expression via the regulation of miR-204-5p in normal SGNs. In vitro functional analysis revealed that lncRNA EBLN3P promoted the recovery of the viability of normal SGNs and inhibited the apoptosis of normal SGNs. Finally, the results revealed a recovery-promoting effect of lncRNA EBLN3P on the structure and function of impaired SGNs in models of deafness. On the whole, the findings of the present study demonstrate that lncRNA EBLN3P promotes the recovery of the function of impaired SGNs by competitively binding to miR-204-5p and regulating TMPRSS3 expression. This suggests that lncRNA EBLN3P may be a potential therapeutic target for diseases involving SNHL.
format Online
Article
Text
id pubmed-7169660
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-71696602020-04-24 Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression Jiang, Wenqi Peng, Anquan Chen, Yichao Pang, Bo Zhang, Zhiwen Int J Mol Med Articles Sensorineural hearing loss (SNHL) is one of the major leading causes of hearing impairment, and is typically characterized by the degeneration of spiral ganglion neurons (SGNs). In previous studies by the authors, it was demonstrated that microRNA (miRNA or miR)-204-5p decreased the viability of SGNs by inhibiting the expression of transmembrane protease, serine 3 (TMPRSS3), which was closely associated with the development of SGNs. However, the upstream regulatory mechanism of miR-204-5p was not fully elucidated. The present study found that an important upstream regulatory factor of miR-204-5p, long non-coding RNA (lncRNA) EBLN3P, was expressed at low levels in impaired SGNs, whereas it was expressed at high levels in normal SGNs. Mechanistic analyses demonstrated that lncRNA EBLN3P functioned as a competing endogenous RNA (ceRNA) when regulating miR-204-5p in normal SGNs. In addition, lncRNA EBLN3P regulated TMPRSS3 expression via the regulation of miR-204-5p in normal SGNs. In vitro functional analysis revealed that lncRNA EBLN3P promoted the recovery of the viability of normal SGNs and inhibited the apoptosis of normal SGNs. Finally, the results revealed a recovery-promoting effect of lncRNA EBLN3P on the structure and function of impaired SGNs in models of deafness. On the whole, the findings of the present study demonstrate that lncRNA EBLN3P promotes the recovery of the function of impaired SGNs by competitively binding to miR-204-5p and regulating TMPRSS3 expression. This suggests that lncRNA EBLN3P may be a potential therapeutic target for diseases involving SNHL. D.A. Spandidos 2020-06 2020-03-17 /pmc/articles/PMC7169660/ /pubmed/32186779 http://dx.doi.org/10.3892/ijmm.2020.4545 Text en Copyright: © Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Jiang, Wenqi
Peng, Anquan
Chen, Yichao
Pang, Bo
Zhang, Zhiwen
Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title_full Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title_fullStr Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title_full_unstemmed Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title_short Long non-coding RNA EBLN3P promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to miR-204-5p and regulating TMPRSS3 expression
title_sort long non-coding rna ebln3p promotes the recovery of the function of impaired spiral ganglion neurons by competitively binding to mir-204-5p and regulating tmprss3 expression
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169660/
https://www.ncbi.nlm.nih.gov/pubmed/32186779
http://dx.doi.org/10.3892/ijmm.2020.4545
work_keys_str_mv AT jiangwenqi longnoncodingrnaebln3ppromotestherecoveryofthefunctionofimpairedspiralganglionneuronsbycompetitivelybindingtomir2045pandregulatingtmprss3expression
AT penganquan longnoncodingrnaebln3ppromotestherecoveryofthefunctionofimpairedspiralganglionneuronsbycompetitivelybindingtomir2045pandregulatingtmprss3expression
AT chenyichao longnoncodingrnaebln3ppromotestherecoveryofthefunctionofimpairedspiralganglionneuronsbycompetitivelybindingtomir2045pandregulatingtmprss3expression
AT pangbo longnoncodingrnaebln3ppromotestherecoveryofthefunctionofimpairedspiralganglionneuronsbycompetitivelybindingtomir2045pandregulatingtmprss3expression
AT zhangzhiwen longnoncodingrnaebln3ppromotestherecoveryofthefunctionofimpairedspiralganglionneuronsbycompetitivelybindingtomir2045pandregulatingtmprss3expression