Cargando…
Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection
BACKGROUND: Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to P...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169966/ https://www.ncbi.nlm.nih.gov/pubmed/32337096 http://dx.doi.org/10.7717/peerj.8250 |
_version_ | 1783523825717084160 |
---|---|
author | Zhang, Peng Zhu, Yuqiang Zhou, Shengjun |
author_facet | Zhang, Peng Zhu, Yuqiang Zhou, Shengjun |
author_sort | Zhang, Peng |
collection | PubMed |
description | BACKGROUND: Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. METHODS: In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. RESULTS: There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance. |
format | Online Article Text |
id | pubmed-7169966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71699662020-04-24 Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection Zhang, Peng Zhu, Yuqiang Zhou, Shengjun PeerJ Agricultural Science BACKGROUND: Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. METHODS: In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. RESULTS: There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance. PeerJ Inc. 2020-04-17 /pmc/articles/PMC7169966/ /pubmed/32337096 http://dx.doi.org/10.7717/peerj.8250 Text en © 2020 Zhang et al. https://creativecommons.org/licenses/by-nc/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) , which permits using, remixing, and building upon the work non-commercially, as long as it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Agricultural Science Zhang, Peng Zhu, Yuqiang Zhou, Shengjun Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title | Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title_full | Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title_fullStr | Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title_full_unstemmed | Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title_short | Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection |
title_sort | comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber (cucumis sativus l.) varieties to identify the genes involved in the resistance to sphaerotheca fuliginea infection |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169966/ https://www.ncbi.nlm.nih.gov/pubmed/32337096 http://dx.doi.org/10.7717/peerj.8250 |
work_keys_str_mv | AT zhangpeng comparativetranscriptomicanalysesofpowderymildewresistantandsusceptiblecultivatedcucumbercucumissativuslvarietiestoidentifythegenesinvolvedintheresistancetosphaerothecafuligineainfection AT zhuyuqiang comparativetranscriptomicanalysesofpowderymildewresistantandsusceptiblecultivatedcucumbercucumissativuslvarietiestoidentifythegenesinvolvedintheresistancetosphaerothecafuligineainfection AT zhoushengjun comparativetranscriptomicanalysesofpowderymildewresistantandsusceptiblecultivatedcucumbercucumissativuslvarietiestoidentifythegenesinvolvedintheresistancetosphaerothecafuligineainfection |