Cargando…
Measurement‐based study on characterizing symmetric and asymmetric respiratory motion interplay effect on target dose distribution in the proton pencil beam scanning
Pencil beam scanning proton therapy makes possible intensity modulation, resulting in improved target dose conformity and organ‐at‐risk (OAR) dose sparing. This benefit, however, results in increased sensitivity to certain clinical and beam delivery parameters, such as respiratory motion. These effe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170285/ https://www.ncbi.nlm.nih.gov/pubmed/32170992 http://dx.doi.org/10.1002/acm2.12846 |
Sumario: | Pencil beam scanning proton therapy makes possible intensity modulation, resulting in improved target dose conformity and organ‐at‐risk (OAR) dose sparing. This benefit, however, results in increased sensitivity to certain clinical and beam delivery parameters, such as respiratory motion. These effects can cause plan degeneration, which could lead to decreased tumor dose or increased OAR dose. This study evaluated the measurements of proton pencil beam scanning delivery made with a 2D ion chamber array in solid water on a 1D motion platform, where respiratory motion was simulated using sine and cosine(4) waves representing sinusoidal symmetric and realistic asymmetric breathing motions, respectively. Motion amplitudes were 0.5 cm and 1 cm corresponding to 1 cm and 2 cm of maximum respiratory excursions, respectively, with 5 sec fixed breathing cycle. The treatment plans were created to mimic spherical targets of 3 cm or 10 cm diameter located at 5 cm or 1 cm depth in solid water phantom. A reference RBE dose of 200 cGy per fraction was delivered in 1, 5, 10, and 15 fractions for each dataset. We evaluated dose conformity and uniformity at the center plane of targets by using the Conformation Number and the Homogeneity Index, respectively. Results indicated that dose conformity as well as homogeneity was more affected by motion for smaller targets. Dose conformity was better achieved for symmetric breathing patterns than asymmetric breathing patterns regardless of the number of fractions. The presence of a range shifter with shallow targets reduced the motion effect by improving dose homogeneity. While motion effects are known to be averaged out over the course of multifractional treatments, this might not be true for proton pencil beam scanning under asymmetrical breathing pattern. |
---|