Cargando…

γ-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion

Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy....

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Qian, Lai, Bao Khanh, Ahooghalandari, Parvin, Helander, Anders, Gylfe, Erik, Gilon, Patrick, Tengholm, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170508/
https://www.ncbi.nlm.nih.gov/pubmed/32156704
http://dx.doi.org/10.1074/jbc.RA119.009577
Descripción
Sumario:Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell–intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4–10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca(2+) and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm. Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.