Cargando…

Group III metabotropic glutamate receptors gate long-term potentiation and synaptic tagging/capture in rat hippocampal area CA2

Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dasgupta, Ananya, Lim, Yu Jia, Kumar, Krishna, Baby, Nimmi, Pang, Ka Lam Karen, Benoy, Amrita, Behnisch, Thomas, Sajikumar, Sreedharan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170650/
https://www.ncbi.nlm.nih.gov/pubmed/32310084
http://dx.doi.org/10.7554/eLife.55344
Descripción
Sumario:Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the rat hippocampal area CA2. Group III metabotropic glutamate receptors are known to down-regulate cAMP-dependent signaling pathways via the activation of G(i/o) proteins. Here, we provide evidence that inhibition of group III mGluRs by specific antagonists permits an NMDA receptor- and protein synthesis-dependent long-lasting synaptic potentiation in the apparently long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. Moreover, long-lasting potentiation of these synapses transforms a transient synaptic potentiation of the entorhinal cortical (EC)-CA2 synapses into a stable long-lasting LTP, in accordance with the synaptic tagging/capture hypothesis (STC). Furthermore, this study also sheds light on the role of ERK/MAPK protein signaling and the downregulation of STEP protein in the group III mGluR inhibition-mediated plasticity in the hippocampal CA2 region, identifying them as critical molecular players. Thus, the regulation of group III mGluRs provides a conducive environment for the SC-CA2 synapses to respond to events that could lead to activity-dependent synaptic plasticity.