Cargando…
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
Automated seizure detection from electroencephalography (EEG) would improve the quality of patient care while reducing medical costs, but achieving reliably high performance across patients has proven difficult. Convolutional Neural Networks (CNNs) show promise in addressing this problem, but they a...
Autores principales: | Saab, Khaled, Dunnmon, Jared, Ré, Christopher, Rubin, Daniel, Lee-Messer, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170880/ https://www.ncbi.nlm.nih.gov/pubmed/32352037 http://dx.doi.org/10.1038/s41746-020-0264-0 |
Ejemplares similares
-
Cross-Modal Data Programming Enables Rapid Medical Machine Learning
por: Dunnmon, Jared A., et al.
Publicado: (2020) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Fries, Jason A., et al.
Publicado: (2019) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Eyuboglu, Sabri, et al.
Publicado: (2021) -
Automated screening of computed tomography using weakly supervised anomaly detection
por: Hibi, Atsuhiro, et al.
Publicado: (2023) -
Snorkel: rapid training data creation with weak supervision
por: Ratner, Alexander, et al.
Publicado: (2019)