Cargando…
Circulating IgGs in Type 2 Diabetes with Atrial Fibrillation Induce IP(3)-Mediated Calcium Elevation in Cardiomyocytes
Higher risk of cardiac arrhythmias including atrial fibrillation (AF) associates with type 2 diabetes mellitus (T2DM) with the underlying mechanism largely unknown. The present study reported a subset of circulating immunoglobulin G autoantibodies (IgGs) from patients with T2DM with AF (T2DM/AF)-ind...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170991/ https://www.ncbi.nlm.nih.gov/pubmed/32315831 http://dx.doi.org/10.1016/j.isci.2020.101036 |
Sumario: | Higher risk of cardiac arrhythmias including atrial fibrillation (AF) associates with type 2 diabetes mellitus (T2DM) with the underlying mechanism largely unknown. The present study reported a subset of circulating immunoglobulin G autoantibodies (IgGs) from patients with T2DM with AF (T2DM/AF)-induced intracellular calcium elevation in both human induced pluripotent stem cell (iPSC)-derived and mouse atrial cardiomyocytes, whereas (identical concentrations of) IgGs from patients with T2DM without AF could not. The IgG-evoked intracellular calcium elevation was insensitive to verapamil, mibefradil, or BTP-2, indicating calcium source from neither voltage-gated calcium channels nor store-operated calcium entry. On the other hand, pharmacological antagonism or genetic knockdown of inositol triphosphate (IP(3)) receptor significantly decreased T2DM/AF IgG-induced intracellular calcium elevation. Furthermore, pharmacological blockage of G protein-coupled receptor (GPCR), heterotrimeric G protein or phospholipase C dampened IgG-induced intracellular calcium elevation. Taken together, circulating IgGs from patients with T2DM/AF stimulated arrhythmogenic intracellular calcium elevation through IP(3) pathway in atrial cardiomyocytes. |
---|