Cargando…

Circulating IgGs in Type 2 Diabetes with Atrial Fibrillation Induce IP(3)-Mediated Calcium Elevation in Cardiomyocytes

Higher risk of cardiac arrhythmias including atrial fibrillation (AF) associates with type 2 diabetes mellitus (T2DM) with the underlying mechanism largely unknown. The present study reported a subset of circulating immunoglobulin G autoantibodies (IgGs) from patients with T2DM with AF (T2DM/AF)-ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yanhong, Liu, Xian, Ma, Ruilian, Wang, Yigang, Zimering, Mark, Pan, Zui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170991/
https://www.ncbi.nlm.nih.gov/pubmed/32315831
http://dx.doi.org/10.1016/j.isci.2020.101036
Descripción
Sumario:Higher risk of cardiac arrhythmias including atrial fibrillation (AF) associates with type 2 diabetes mellitus (T2DM) with the underlying mechanism largely unknown. The present study reported a subset of circulating immunoglobulin G autoantibodies (IgGs) from patients with T2DM with AF (T2DM/AF)-induced intracellular calcium elevation in both human induced pluripotent stem cell (iPSC)-derived and mouse atrial cardiomyocytes, whereas (identical concentrations of) IgGs from patients with T2DM without AF could not. The IgG-evoked intracellular calcium elevation was insensitive to verapamil, mibefradil, or BTP-2, indicating calcium source from neither voltage-gated calcium channels nor store-operated calcium entry. On the other hand, pharmacological antagonism or genetic knockdown of inositol triphosphate (IP(3)) receptor significantly decreased T2DM/AF IgG-induced intracellular calcium elevation. Furthermore, pharmacological blockage of G protein-coupled receptor (GPCR), heterotrimeric G protein or phospholipase C dampened IgG-induced intracellular calcium elevation. Taken together, circulating IgGs from patients with T2DM/AF stimulated arrhythmogenic intracellular calcium elevation through IP(3) pathway in atrial cardiomyocytes.