Cargando…
MicroRNA-186-5p serves as a diagnostic biomarker in atherosclerosis and regulates vascular smooth muscle cell proliferation and migration
OBJECTIVE: MicroRNA dysregulation occurs in many human diseases, including atherosclerosis. Here, we examined the serum expression and clinical significance of miR-186-5p in patients with atherosclerosis, and explored its influence on vascular smooth muscle cell (VSMC) proliferation and migration. M...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171790/ https://www.ncbi.nlm.nih.gov/pubmed/32336973 http://dx.doi.org/10.1186/s11658-020-00220-1 |
Sumario: | OBJECTIVE: MicroRNA dysregulation occurs in many human diseases, including atherosclerosis. Here, we examined the serum expression and clinical significance of miR-186-5p in patients with atherosclerosis, and explored its influence on vascular smooth muscle cell (VSMC) proliferation and migration. METHODS: Blood samples were collected from 104 patients with asymptomatic atherosclerosis and 80 healthy controls. Quantitative real-time PCR was applied to measure the miR-186-5p level. An ROC curve was established to assess the discriminatory ability of the serum miR-186-5p level for identifying atherosclerosis from controls. CCK-8 and Transwell assays were used to evaluate the impact of miR-186-5p on cell behaviors. RESULTS: Serum expression of miR-186-5p was significantly higher in atherosclerosis patients than in the control group. The serum miR-186-5p level showed a positive correlation with CIMT and could be used to distinguish atherosclerosis patients from healthy controls, with an area under the curve (AUC) score of 0.891. In VSMCs, overexpression of miR-186-5p significantly promoted cell proliferation and migration, while the opposite results were observed when miR-186-5p was downregulated. CONCLUSION: Overexpression of miR-186-5p has a certain diagnostic significance for atherosclerosis. Upregulation of miR-186-5p stimulates VSMC proliferation and migration. Therefore, it is a possible target for atherosclerosis interventions. |
---|