Cargando…

Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin

BACKGROUND: Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. METHODS: Induced keratinocyte-like cells (iKCs) were d...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jie, Yun, Wonjin, Park, Junghyun, Kang, Phil Jun, Lee, Gilju, Song, Gwonhwa, Kim, In Yong, You, Seungkwon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171822/
https://www.ncbi.nlm.nih.gov/pubmed/32312260
http://dx.doi.org/10.1186/s12929-020-00642-1
Descripción
Sumario:BACKGROUND: Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. METHODS: Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. RESULTS: BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. CONCLUSIONS: This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.