Cargando…
Identifying GPCR-drug interaction based on wordbook learning from sequences
BACKGROUND: G protein-coupled receptors (GPCRs) mediate a variety of important physiological functions, are closely related to many diseases, and constitute the most important target family of modern drugs. Therefore, the research of GPCR analysis and GPCR ligand screening is the hotspot of new drug...
Autores principales: | Wang, Pu, Huang, Xiaotong, Qiu, Wangren, Xiao, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171867/ https://www.ncbi.nlm.nih.gov/pubmed/32312232 http://dx.doi.org/10.1186/s12859-020-3488-8 |
Ejemplares similares
-
BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR–Drug Interaction Based on Wordbook Learning From Sequences
por: Qiu, Wangren, et al.
Publicado: (2021) -
EMCBOW-GPCR: A method for identifying G-protein coupled receptors based on word embedding and wordbooks
por: Qiu, Wangren, et al.
Publicado: (2021) -
DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences
por: Luo, Zhengtao, et al.
Publicado: (2022) -
A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells
por: Li, Fei, et al.
Publicado: (2019) -
MSEDDI: Multi-Scale Embedding for Predicting Drug—Drug Interaction Events
por: Yu, Liyi, et al.
Publicado: (2023)