Cargando…
Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
INTRODUCTION: Deep learning-based algorithms have demonstrated enormous performance in segmentation of medical images. We collected a dataset of multiparametric MRI and contour data acquired for use in radiosurgery, to evaluate the performance of deep convolutional neural networks (DCNN) in automati...
Autores principales: | Bousabarah, Khaled, Ruge, Maximilian, Brand, Julia-Sarita, Hoevels, Mauritius, Rueß, Daniel, Borggrefe, Jan, Große Hokamp, Nils, Visser-Vandewalle, Veerle, Maintz, David, Treuer, Harald, Kocher, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171921/ https://www.ncbi.nlm.nih.gov/pubmed/32312276 http://dx.doi.org/10.1186/s13014-020-01514-6 |
Ejemplares similares
-
Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions
por: Bousabarah, Khaled, et al.
Publicado: (2021) -
Radiomics in radiation oncology—basics, methods, and limitations
por: Lohmann, Philipp, et al.
Publicado: (2020) -
Radiotoxicity in robotic radiosurgery: proposing a new quality index for optimizing the treatment planning of brain metastases
por: Hellerbach, Alexandra, et al.
Publicado: (2017) -
Stereotactic radiosurgery of benign brain tumors in elderly patients: evaluation of outcome and toxicity
por: Rueß, Daniel, et al.
Publicado: (2020) -
Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery
por: Hellerbach, Alexandra, et al.
Publicado: (2021)