Cargando…

Vascular Targeting: Recent Advances and Therapeutic Perspectives

The ability to deliver therapeutics site—specifically in vivo—remains a major challenge for the treatment of malignant, inflammatory, cardiovascular, and degenerative diseases. The need to target agents safely, efficiently, and selectively has become increasingly evident because of progress in vascu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hajitou, Amin, Pasqualini, Renata, Arap, Wadih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7172921/
https://www.ncbi.nlm.nih.gov/pubmed/16546688
http://dx.doi.org/10.1016/j.tcm.2006.01.003
Descripción
Sumario:The ability to deliver therapeutics site—specifically in vivo—remains a major challenge for the treatment of malignant, inflammatory, cardiovascular, and degenerative diseases. The need to target agents safely, efficiently, and selectively has become increasingly evident because of progress in vascular targeting. The vascular endothelium is a central target for intervention, given its multiple roles in the physiology (in health) and pathophysiology (in disease) and its direct accessibility to circulating ligands. In cancer, the expression of specific molecules on the surface of vascular endothelial and perivascular cells might enable direct therapeutic targeting. The use of in vivo phage display has significantly contributed to the identification of such targets, which have been successfully used for directed vascular targeting in preclinical animal models. Several animal studies have been performed by using fused molecules between tumor endothelium-directed molecules and immunomodulatory, procoagulant, or cytotoxic molecules. In addition to delivery of therapeutic agents, vascular targeted gene therapies based on both ligand-directed delivery of gene vectors to tumor endothelium and transcriptional targeting have also emerged. In this review, we discuss ligand-directed vascular targeting strategies with an emphasis on recent developments related to phage-display-based screenings.