Cargando…
Wide range screening of algorithmic bias in word embedding models using large sentiment lexicons reveals underreported bias types
Concerns about gender bias in word embedding models have captured substantial attention in the algorithmic bias research literature. Other bias types however have received lesser amounts of scrutiny. This work describes a large-scale analysis of sentiment associations in popular word embedding model...
Autor principal: | Rozado, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173861/ https://www.ncbi.nlm.nih.gov/pubmed/32315320 http://dx.doi.org/10.1371/journal.pone.0231189 |
Ejemplares similares
-
Improving the performance of lexicon-based review sentiment analysis method by reducing additional introduced sentiment bias
por: Han, Hongyu, et al.
Publicado: (2018) -
Using word embeddings to investigate cultural biases
por: Durrheim, Kevin, et al.
Publicado: (2022) -
The SenticNet sentiment lexicon
por: Biagioni, Raoul
Publicado: (2016) -
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
The Development of the Chinese Sentiment Lexicon for Internet
por: Zhao, Jia-Lin, et al.
Publicado: (2019)