Cargando…
Flocking in complex environments—Attention trade-offs in collective information processing
The ability of biological and artificial collectives to outperform solitary individuals in a wide variety of tasks depends crucially on the efficient processing of social and environmental information at the level of the collective. Here, we model collective behavior in complex environments with man...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173936/ https://www.ncbi.nlm.nih.gov/pubmed/32251423 http://dx.doi.org/10.1371/journal.pcbi.1007697 |
Sumario: | The ability of biological and artificial collectives to outperform solitary individuals in a wide variety of tasks depends crucially on the efficient processing of social and environmental information at the level of the collective. Here, we model collective behavior in complex environments with many potentially distracting cues. Counter-intuitively, large-scale coordination in such environments can be maximized by strongly limiting the cognitive capacity of individuals, where due to self-organized dynamics the collective self-isolates from disrupting information. We observe a fundamental trade-off between coordination and collective responsiveness to environmental cues. Our results offer important insights into possible evolutionary trade-offs in collective behavior in biology and suggests novel principles for design of artificial swarms exploiting attentional bottlenecks. |
---|