Cargando…
α-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson’s disease olfactory bulb
Reduced olfactory function (hyposmia) is one of the most common non-motor symptoms experienced by those living with Parkinson’s disease (PD), however, the underlying pathology of the dysfunction is unclear. Recent evidence indicates that α-synuclein (α-syn) pathology accumulates in the anterior olfa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174302/ https://www.ncbi.nlm.nih.gov/pubmed/32317654 http://dx.doi.org/10.1038/s41598-020-63412-x |
Sumario: | Reduced olfactory function (hyposmia) is one of the most common non-motor symptoms experienced by those living with Parkinson’s disease (PD), however, the underlying pathology of the dysfunction is unclear. Recent evidence indicates that α-synuclein (α-syn) pathology accumulates in the anterior olfactory nucleus of the olfactory bulb years before the motor symptoms are present. It is well established that neuronal cells in the olfactory bulb are affected by α-syn, but the involvement of other non-neuronal cell types is unknown. The occurrence of intracellular α-syn inclusions were quantified in four non-neuronal cell types – microglia, pericytes, astrocytes and oligodendrocytes as well as neurons in the anterior olfactory nucleus of post-mortem human PD olfactory bulbs (n = 11) and normal olfactory bulbs (n = 11). In the anterior olfactory nucleus, α-syn inclusions were confirmed to be intracellular in three of the four non-neuronal cell types, where 7.78% of microglia, 3.14% of pericytes and 1.97% of astrocytes were affected. Neurons containing α-syn inclusions comprised 8.60% of the total neuron population. Oligodendrocytes did not contain α-syn. The data provides evidence that non-neuronal cells in the PD olfactory bulb contain α-syn inclusions, suggesting that they may play an important role in the progression of PD. |
---|