Cargando…
Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
Predicting the occurrence of ventricular tachyarrhythmia (VTA) in advance is a matter of utmost importance for saving the lives of cardiac arrhythmia patients. Machine learning algorithms have been used to predict the occurrence of imminent VTA. In this study, we used a one-dimensional convolutional...
Autores principales: | Taye, Getu Tadele, Hwang, Han-Jeong, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174382/ https://www.ncbi.nlm.nih.gov/pubmed/32317680 http://dx.doi.org/10.1038/s41598-020-63566-8 |
Ejemplares similares
-
Author Correction: Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
por: Taye, Getu Tadele, et al.
Publicado: (2020) -
Optimal Length of Heart Rate Variability Data and Forecasting Time for Ventricular Fibrillation Prediction Using Machine Learning
por: Jeong, Da Un, et al.
Publicado: (2021) -
Machine Learning Approach to Predict Ventricular Fibrillation Based on QRS Complex Shape
por: Taye, Getu Tadele, et al.
Publicado: (2019) -
Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms
por: Jeong, Da Un, et al.
Publicado: (2020) -
Relationship Between Electrical Instability and Pumping Performance During Ventricular Tachyarrhythmia: Computational Study
por: Jeong, Da Un, et al.
Publicado: (2020)