Cargando…
Characterization and Classification of Electrophysiological Signals Represented as Visibility Graphs Using the Maxclique Graph
Detection, characterization and classification of patterns within time series from electrophysiological signals have been a challenge for neuroscientists due to their complexity and variability. Here, we aimed to use graph theory to characterize and classify waveforms within biological signals using...
Autores principales: | Rodriguez-Torres, Erika Elizabeth, Paredes-Hernandez, Ulises, Vazquez-Mendoza, Enrique, Tetlalmatzi-Montiel, Margarita, Morgado-Valle, Consuelo, Beltran-Parrazal, Luis, Villarroel-Flores, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174547/ https://www.ncbi.nlm.nih.gov/pubmed/32351953 http://dx.doi.org/10.3389/fbioe.2020.00324 |
Ejemplares similares
-
Explainable Prediction of Medical Codes With Knowledge Graphs
por: Teng, Fei, et al.
Publicado: (2020) -
An Effective Graph Clustering Method to Identify Cancer Driver Modules
por: Zhang, Wei, et al.
Publicado: (2020) -
SemNet: Using Local Features to Navigate the Biomedical Concept Graph
por: Sedler, Andrew R., et al.
Publicado: (2019) -
A Guide to Conquer the Biological Network Era Using Graph Theory
por: Koutrouli, Mikaela, et al.
Publicado: (2020) -
Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction
por: Wang, Xianfang, et al.
Publicado: (2020)