Cargando…
IL36 Cooperates With Anti-CTLA-4 mAbs to Facilitate Antitumor Immune Responses
Despite the great impact on long-term survival of some cancer patients, the immune checkpoint blockade (ICB) therapy is limited by its low response rates for most cancers. There is a pressing need for novel combination immunotherapies that overcome the resistance to current ICB therapies. Cytokines...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174717/ https://www.ncbi.nlm.nih.gov/pubmed/32351508 http://dx.doi.org/10.3389/fimmu.2020.00634 |
Sumario: | Despite the great impact on long-term survival of some cancer patients, the immune checkpoint blockade (ICB) therapy is limited by its low response rates for most cancers. There is a pressing need for novel combination immunotherapies that overcome the resistance to current ICB therapies. Cytokines play a pivotal role in tumor immunotherapy by helping initiating and driving antitumor immune responses. Here, we demonstrated that, besides conventional CD4(+) and CD8(+) T cells, IL36 surprisingly increased the number of tumor-infiltrating regulatory T (Treg) cells in vivo and enhanced proliferation of Tregs in vitro. Administration of CTLA-4 monoclonal antibodies (mAbs) strongly enhanced IL36-stimulated antitumor activities through depletion of Tregs. In addition, a cancer gene therapy using the IL36-loaded nanoparticles in combination with CTLA-4 mAbs additively reduced lung metastasis of breast tumor cells. We further showed that the combined therapy of CTLA-4 mAbs and IL36 led to an increase in proliferation and IFN-γ production by CD4(+) and CD8(+) T cells when compared to single therapy with CTLA-4 mAbs or IL36. Collectively, our findings demonstrated a new combination therapy that could improve the clinical response to ICB immunotherapy for cancer. |
---|