Cargando…
Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS – the ability to detect genetic association by linkage disequilibrium (LD) – is also its limitation. Whilst the ever-increasing study s...
Autores principales: | Nicholls, Hannah L., John, Christopher R., Watson, David S., Munroe, Patricia B., Barnes, Michael R., Cabrera, Claudia P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174742/ https://www.ncbi.nlm.nih.gov/pubmed/32351543 http://dx.doi.org/10.3389/fgene.2020.00350 |
Ejemplares similares
-
A review of post-GWAS prioritization approaches
por: Hou, Lin, et al.
Publicado: (2013) -
Feet and legs malformation in Nellore cattle: genetic analysis and prioritization of GWAS results
por: Silva, Thales de Lima, et al.
Publicado: (2023) -
Prioritization of nasal polyp-associated genes by integrating GWAS and eQTL summary data
por: Yoshikawa, Masahiro, et al.
Publicado: (2023) -
Validation of Susceptibility Loci for Vitiligo Identified by GWAS in the Chinese Han Population
por: Cheng, Lu, et al.
Publicado: (2020) -
Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci
por: Shen, Changbing, et al.
Publicado: (2016)