Cargando…
A Constrained ICA-EMD Model for Group Level fMRI Analysis
Independent component analysis (ICA), being a data-driven method, has been shown to be a powerful tool for functional magnetic resonance imaging (fMRI) data analysis. One drawback of this multivariate approach is that it is not, in general, compatible with the analysis of group data. Various techniq...
Autores principales: | Wein, Simon, Tomé, Ana M., Goldhacker, Markus, Greenlee, Mark W., Lang, Elmar W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175031/ https://www.ncbi.nlm.nih.gov/pubmed/32351349 http://dx.doi.org/10.3389/fnins.2020.00221 |
Ejemplares similares
-
Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI
por: Wang, Kai, et al.
Publicado: (2018) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011) -
Frequency-Resolved Dynamic Functional Connectivity Reveals Scale-Stable Features of Connectivity-States
por: Goldhacker, Markus, et al.
Publicado: (2018) -
Temporally and Spatially Constrained ICA of fMRI Data Analysis
por: Wang, Zhi, et al.
Publicado: (2014) -
Temporally constrained ICA with threshold and its application to fMRI data
por: Long, Zhiying, et al.
Publicado: (2019)